scholarly journals Role of Phage Capsid in the Resistance to UV-C Radiations

2021 ◽  
Vol 22 (7) ◽  
pp. 3408
Author(s):  
Laura Maria De Plano ◽  
Domenico Franco ◽  
Maria Giovanna Rizzo ◽  
Vincenzo Zammuto ◽  
Concetta Gugliandolo ◽  
...  

The conformational variation of the viral capsid structure plays an essential role both for the environmental resistance and acid nuclear release during cellular infection. The aim of this study was to evaluate how capsid rearrangement in engineered phages of M13 protects viral DNA and peptide bonds from damage induced by UV-C radiation. From in silico 3D modelling analysis, two M13 engineered phage clones, namely P9b and 12III1, were chosen for (i) chemical features of amino acids sequences, (ii) rearrangements in the secondary structure of their pVIII proteins and (iii) in turn the interactions involved in phage capsid. Then, their resistance to UV-C radiation and hydrogen peroxide (H2O2) was compared to M13 wild-type vector (pC89) without peptide insert. Results showed that both the phage clones acquired an advantage against direct radiation damage, due to a reorganization of interactions in the capsid for an increase of H-bond and steric interactions. However, only P9b had an increase in resistance against H2O2. These results could help to understand the molecular mechanisms involved in the stability of new virus variants, also providing quick and necessary information to develop effective protocols in the virus inactivation for human activities, such as safety foods and animal-derived materials.

2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Youwei Li ◽  
Cameron Lenahan ◽  
Yibo Ou ◽  
Minghuan Wang ◽  
...  

Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.


2000 ◽  
Vol 74 (23) ◽  
pp. 11055-11066 ◽  
Author(s):  
Åsa Öhagen ◽  
Dana Gabuzda

ABSTRACT The Vif protein of human immunodeficiency virus type 1 (HIV-1) is important for virion infectivity. Previous studies have shown thatvif-defective virions exhibit structural abnormalities in the virus core and are defective in the ability to complete proviral DNA synthesis in acutely infected cells. We developed novel assays to assess the relative stability of the core in HIV-1 virions. Using these assays, we examined the role of Vif in the stability of the HIV-1 core. The integrity of the core was examined following virion permeabilization or removal of the lipid envelope and treatment with various triggers, including S100 cytosol, deoxynucleoside triphosphates, detergents, NaCl, and buffers of different pH to mimic aspects of the uncoating and disassembly process which occurs after virus entry but preceding or during reverse transcription.vif mutant cores were more sensitive to disruption by all triggers tested than wild-type cores, as determined by endogenous reverse transcriptase (RT) assays, biochemical analyses, and electron microscopy. RT and the p7 nucleocapsid protein were released more readily from vif mutant virions than from wild-type virions, suggesting that the internal nucleocapsid is less stably packaged in the absence of Vif. Purified cores could be isolated from wild-type but not vif mutant virions by sedimentation through detergent-treated gradients. These results demonstrate that Vif increases the stability of virion cores. This may permit efficient viral DNA synthesis by preventing premature degradation or disassembly of viral nucleoprotein complexes during early events after virus entry.


2005 ◽  
Vol 168 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Joost Gribnau ◽  
Sandra Luikenhuis ◽  
Konrad Hochedlinger ◽  
Kim Monkhorst ◽  
Rudolf Jaenisch

In mammals, dosage compensation is achieved by X chromosome inactivation in female cells. Xist is required and sufficient for X inactivation, and Xist gene deletions result in completely skewed X inactivation. In this work, we analyzed skewing of X inactivation in mice with an Xist deletion encompassing sequence 5 KB upstream of the promoter through exon 3. We found that this mutation results in primary nonrandom X inactivation in which the wild-type X chromosome is always chosen for inactivation. To understand the molecular mechanisms that affect choice, we analyzed the role of replication timing in X inactivation choice. We found that the two Xist alleles and all regions tested on the X chromosome replicate asynchronously before the start of X inactivation. However, analysis of replication timing in cell lines with skewed X inactivation showed no preference for one of the two Xist alleles to replicate early in S-phase before the onset of X inactivation, indicating that asynchronous replication timing does not play a role in skewing of X inactivation.


2003 ◽  
Vol 372 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Chris NATHANIEL ◽  
Louise A. WALLACE ◽  
Jonathan BURKE ◽  
Heini W. DIRR

The thioredoxin-like fold has a βαβαββα topology, and most proteins/domains with this fold have a topologically conserved cis-proline residue at the N-terminus of β-strand 3. This residue plays an important role in the catalytic function and stability of thioredoxin-like proteins, but is reported not to contribute towards the stability of glutathione S-transferases (GSTs) [Allocati, Casalone, Masulli, Caccarelli, Carletti, Parker and Di Ilio (1999) FEBS Lett. 445, 347–350]. In order to further address the role of the cis-proline in the structure, function and stability of GSTs, cis-Pro-56 in human GST (hGST) A1-1 was replaced with a glycine, and the properties of the P56G mutant were compared with those of the wild-type protein. Not only was the catalytic function of the mutant dramatically reduced, so was its conformational stability, as indicated by equilibrium unfolding and unfolding kinetics experiments with urea as denaturant. These findings are discussed in the context of other thioredoxin-like proteins.


2014 ◽  
Vol 90 (3) ◽  
pp. 615-621 ◽  
Author(s):  
Jing Liu ◽  
Lin Zhou ◽  
Ji-Hong Chen ◽  
Wang Mao ◽  
Wen-Jian Li ◽  
...  
Keyword(s):  

1994 ◽  
Vol 125 (5) ◽  
pp. 1057-1065 ◽  
Author(s):  
S C Dahl ◽  
R W Geib ◽  
M T Fox ◽  
M Edidin ◽  
D Branton

A spectrin-based membrane skeleton is important for the stability and organization of the erythrocyte. To study the role of spectrin in cells that possess complex cytoskeletons, we have generated alpha-spectrin-deficient erythroleukemia cell lines from sph/sph mice. These cells contain beta-spectrin, but lack alpha-spectrin as determined by immunoblot and Northern blot analyses. The effects of alpha-spectrin deficiency are apparent in the cells' irregular shape and fragility in culture. Capping of membrane glycoproteins by fluorescent lectin or antibodies occurs more rapidly in sph/sph than in wild-type erythroleukemia cells, and the caps appear more concentrated. The data support the idea that spectrin plays an important role in organizing membrane structure and limiting the lateral mobility of integral membrane glycoproteins in cells other than mature erythrocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2393-2393 ◽  
Author(s):  
Rabindranath Bera ◽  
Der-Cherng Liang ◽  
Ming-Chun Chiu ◽  
Ying-Jung Huang ◽  
Sung-Tzu Liang ◽  
...  

Abstract Abstract 2393 Somatic mutations of ASXL1 gene have been described in patients with myeloid malignancies and were associated with inferior outcomes. ASXL1 mutations have also been detected in myeloid blast crisis of chronic myeloid leukemia (CML) patients. The mechanisms of acute myeloid leukemia (AML) transformation and functional role of ASXL1 mutations in the leukemogenesis remain to be determined. Recently, we identified PHD domain deletion mutations (R693X and L885X) in patients with CML in myeloid blast crisis and/or AML with minimal differentiation (M0). In the present study, we aimed to investigate the role of PHD domain deletion mutations in the pathogenesis of AML transformation. The K562 cells carrying Philadelphia chromosome, serves as a model to study the molecular mechanisms associated with leukemogenesis. Our result showed that R693X/L885X mutations inhibited PMA-treated megakaryocytic differentiation with the change of physiological characteristic features and suppressed the induction of CD61, a specific cell surface marker of megakaryocytes. We also found that FOSB, a member of Fos family of AP-1 transcription factors was down-regulated in K562 cells expressing R693X and L885X compared to wild-type ASXL1 during PMA-mediated megakaryocytic differentiation. Examination of intracellular signaling pathways showed that the mutant ASXL1 protein prevented PMA-induced megakaryocytic differentiation through the inactivation of ERK, AKT and STAT5 which are required for differentiation. Further, ASXL1 depletion by shRNA in K562 cells led to enhanced cell proliferation, increased colony formation and impaired PMA-mediated differentiation. Previous studies in Drosophila had revealed that Asxl forms the protein complexes of both Trithorax and Polycomb groups that are required for maintaining chromatin in both activated and repressed transcriptional states. By using Western blot analysis, we demonstrated that PHD domain deletion mutations of ASXL1 significantly suppressed the transcriptionally repressive mark H3K27 trimethylation, however no effect on methylated H3K4 (H3K4me2 and H3K4me3), an active histone mark in K562 cells. Co-immunoprecipitation analysis revealed that wild-type, but not PHD domain deletion mutations of ASXL1 interact with EZH2, a member of the polycomb repressive complex 2 (PRC2). Importantly, PHD deletion mutations or downregulation of ASXL1 resulted in the suppression of EZH2 in K562 cells. Our study demonstrated that PHD deletion mutations of ASXL1 resulted in a loss-of-function which exhibited direct effects on the proliferation and differentiation and also proposed a specific role for ASXL1 in epigenetic regulation of gene expression in K562 cells. Disclosures: No relevant conflicts of interest to declare.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 7 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

The role of ubiquitous proteins (UPs) and their corresponding enzymes have been underestimated in carcinogenesis as the focus of much research revolved around measuring mutations and/or other genetic epiphenomena as surrogate markers of cancer and cancer progression. Over the past three decades, the scientific community has come to realize that the concentration on microdissection of cancer cells without accounting for the neighborhood in which these cells reside, i.e., the stroma, fails to reflect the true nature of cancer biology. UPs are fundamental for cellular homeostasis and phylogenetic development as well as for the integrity of the cytoskeleton and for the stability of cells and tissues in regards to intercellular signaling, cell shape and mobility, apoptosis, wound healing, and cell polarity. Corresponding enzymes are used by microorganisms to gain entry into the host by degradation of UPs and play a role to cleave peptide bonds for killing disease-causing life forms along for the creation of the precancerous niche (PCN) during carcinogenesis, cancer invasion, and in metastasis. The language used by such proteins as well as their complementary enzymes with its influence on multiple pathways and the cross-linked extracellular matrix is incompletely understood. The role of UPs in the disruption of signaling homeostasis and resulting interference with crosstalk in carcinogenesis appears sufficiently delineated to warrant a much more refined examination of their qualitative and quantitative contribution to the development of cancer and cancer therapy.


2016 ◽  
Vol 60 (5) ◽  
pp. 3123-3126 ◽  
Author(s):  
Carlo Bottoni ◽  
Mariagrazia Perilli ◽  
Francesca Marcoccia ◽  
Alessandra Piccirilli ◽  
Cristina Pellegrini ◽  
...  

ABSTRACTSite-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-β-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160291 ◽  
Author(s):  
P. Christopher Caridi ◽  
Laetitia Delabaere ◽  
Grzegorz Zapotoczny ◽  
Irene Chiolo

Heterochromatin is mostly composed of repeated DNA sequences prone to aberrant recombination. How cells maintain the stability of these sequences during double-strand break (DSB) repair has been a long-standing mystery. Studies in Drosophila cells revealed that faithful homologous recombination repair of heterochromatic DSBs relies on the striking relocalization of repair sites to the nuclear periphery before Rad51 recruitment and repair progression. Here, we summarize our current understanding of this response, including the molecular mechanisms involved, and conserved pathways in mammalian cells. We will highlight important similarities with pathways identified in budding yeast for repair of other types of repeated sequences, including rDNA and short telomeres. We will also discuss the emerging role of chromatin composition and regulation in heterochromatin repair progression. Together, these discoveries challenged previous assumptions that repair sites are substantially static in multicellular eukaryotes, that heterochromatin is largely inert in the presence of DSBs, and that silencing and compaction in this domain are obstacles to repair. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


Sign in / Sign up

Export Citation Format

Share Document