scholarly journals Bis(trifluoromethylsulfonyl)imide Ionic Liquids Applied for Fine-Tuning the Cure Characteristics and Performance of Natural Rubber Composites

2021 ◽  
Vol 22 (7) ◽  
pp. 3678
Author(s):  
Anna Sowińska ◽  
Magdalena Maciejewska ◽  
Anna Grajewska

The goal of this work was to apply ionic liquids (ILs) with bis(trifluoromethylsulfonyl)imide anion (TFSI) for fine-tuning the cure characteristics and physico-chemical properties of elastomer composites based on a biodegradable natural rubber (NR) matrix. ILs with TFSI anion and different cations, such as alkylpyrrolidinium, alkylammonium, and alkylsulfonium cations, were applied to increase the efficiency of sulfur vulcanization and to improve the performance of NR composites. Thus, the influence of ILs on the vulcanization of NR compounds, as well as crosslink density and physical properties of NR vulcanizates, including tensile properties, thermal stability, and resistance to thermo-oxidative aging was explored. The activity of ILs seems to be strongly dependent on their cation. Pyrrolidinium and ammonium ILs effectively supported the vulcanization, reducing the optimal vulcanization time and temperature of NR compounds and increasing the crosslink density of the vulcanizates. Consequently, vulcanizates with these ILs exhibited higher tensile strength than the benchmark without IL. On the other hand, sulfonium ILs reduced the torque increment owing to the lower crosslinking degree of elastomer but significantly improved the resistance of NR composites to thermo-oxidation. Thus, TFSI ILs can be used to align the curing behavior and performance of NR composites for particular applications.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1656
Author(s):  
Magdalena Maciejewska ◽  
Anna Sowińska

This work concerns the effect of fillers and ionic liquids on the cure characteristics of natural rubber (NR) compounds, as well as the mechanical and thermal properties of the vulcanizates. Three types of white filler were applied, such as cellulose, nanosized silica and hydrotalcite, to modify the performance of NR composites. Additionally, ionic liquids (ILs) with bromide anion and different cations, i.e., 1-butyl-3-methylimidazolium (Bmi) and 1-butyl-3-methylpyrrolidinium (Bmpyr), were used to improve the cure characteristics of NR compounds and functional properties of the vulcanizates. The type of filler and the structure of ILs were proved to affect the rheometric properties and cure characteristics of NR compounds as well as the performance of the NR vulcanizates. Owing to the adsorption of curatives onto the surface, silica reduced the activity of the crosslinking system, prolonging the optimal vulcanization time of NR compounds and reducing the crosslinking degree of the elastomer. However, silica-filled NR exhibited the highest thermal stability. Hydrotalcite increased the crosslink density and, consequently, the mechanical properties of the vulcanizates, but deteriorated their thermal stability. ILs beneficially influenced the cure characteristics of NR compounds, as well as the crosslink density and mechanical performance of the vulcanizates, particularly those filled with silica. Cellulose did not significantly affect the vulcanization of NR compounds and crosslink density of the vulcanizates compared to the unfilled elastomer, but deteriorated their tensile strength. On the other hand, cellulose improved the thermal stability and did not considerably alter the damping properties of the vulcanizates.


Author(s):  
Christoph Wiedemann ◽  
David Fushman ◽  
Frank Bordusa

Ionic liquids (ILs) have gained a lot of attention as alternative solvents in many fields of science in the last two decades. It is known that the type of anion...


2021 ◽  
Vol 17 ◽  
Author(s):  
Giuseppe Maria Merone ◽  
Angela Tartaglia ◽  
Enrica Rosato ◽  
Cristian D’Ovidio ◽  
Abuzar Kabir ◽  
...  

Background: Ionic liquids (ILs) are a unique class of compounds consisting exclusively of cations and anions that possess distinctive properties such as low volatility, high thermal stability, miscibility with water and organic solvents, electrolytic conductivity and non-flammability. Ionic liquids have been defined as "design solvents", because it is possible to modify their physical and chemical properties by appropriately choosing cations and anions, in order to meet the specific characteristics based on their potential application. Introduction: Due of their tunable nature and properties, ILs are considered as the perfect candidates for numerous applications in analytical chemistry including sample preparation, stationary phases in liquid or gas chromatography, additives in capillary electrophoresis, or in mass spectrometry for spectral and electrochemical analysis. In the last years, the number of publications regarding ILs has rapidly increased, highlighting the broad applications of these compounds in various fields of analytical chemistry. Results: This review first described the main physico-chemical characteristics of ionic liquids, and subsequently reported the various applications in different subdisciplines of analytical chemistry, including the extraction procedure and separation techniques. Furthermore, in each paragraph the most recent applications of ionic liquids in the food, environmental, biological, etc. fields have been described. Conclusion: Overall, the topic discussed highlights the key role of ionic liquids in analytical chemistry, giving hints for their future applications in chemistry but also in biology and medicine.


ChemInform ◽  
2013 ◽  
Vol 44 (31) ◽  
pp. no-no
Author(s):  
Luis C. Branco ◽  
Goncalo V. S. M. Carrera ◽  
Joao Aires-de-Sousa ◽  
Ignacio Lopez Martin ◽  
Raquel Frade ◽  
...  

2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3260
Author(s):  
Magdalena Maciejewska

Nanosized calcium oxide (CaO) featuring a surface grafted with allylmalonic acid (ALA) was used to increase the efficiency of the peroxide crosslinking of an ethylene–propylene copolymer (EPM) filled with silica nanoparticles. In this study, 1-butyl-3-methylimidazolium ionic liquids (ILs) with different anions were applied to improve the dispersion of CaO/ALA and silica nanoparticles in the EPM copolymer, as well as to catalyze the interfacial crosslinking reactions. In this article, we discuss the effects of CaO/ALA and ILs on the curing characteristics, vulcanization temperature, crosslink density, mechanical properties, and thermal stability of EPM, as well as the resistance of EPM to weather aging. The CaO/ALA with ILs reduced the vulcanization time of the rubber compounds without a significant effect on the vulcanization temperature. Their application resulted in an increased vulcanizate crosslink density, as well as improved tensile strength compared to the pure peroxide system. The influence of 1-butyl-3-methylimidazolium ILs on EPM vulcanization and performance depends on the anion present in the molecules of the ionic liquid. The most active IL seems to be that with the tetrafluoroborate anion.


ChemInform ◽  
2012 ◽  
Vol 43 (24) ◽  
pp. no-no
Author(s):  
Urszula Domanska ◽  
Marta Krolikowska ◽  
Kamil Paduszynski

2017 ◽  
Vol 864 ◽  
pp. 48-53
Author(s):  
Ahmad Fairoz Aziz ◽  
Khuzaimah Nazir ◽  
S.F. Ayub ◽  
N.I. Adam ◽  
Muhd Zu Azhan Yahya ◽  
...  

0.5 wt.% of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) was introduced into polymer electrolytes based on 30% poly(methyl-methacrylate) grafted natural rubber (MG30) in order to reduce the aging factor of MG30. The polymer electrolyte without 6PPD was used as control. All samples were prepared by using solution cast techniques. The effect of 6PPD in the electrolytes was analysed by using TGA, DSC and FTIR. TGA and DSC results revealed the thermal stability of MG30 electrolytes with 6PPD have higher thermal stability but lower glass transition temperature value. FTIR studies confirmed the existence of LiTF in the sample and prove the occurrence of polymer-salt complexation. Deconvolution techniques analysis on FTIR spectra shows the electrolyte sample with 6PPD display more ion dissociation which reflects to higher ionic conductivity.


Author(s):  
Anya Fettouma Bouarab ◽  
Jean-Philippe Harvey ◽  
Christian Robelin

As the field of ionic liquids matures to more industrially implemented applications, robust models of their physico-chemical properties become necessary for process optimization. Viscosity is a particularly difficult property to...


Sign in / Sign up

Export Citation Format

Share Document