scholarly journals Manmade Electromagnetic Fields and Oxidative Stress—Biological Effects and Consequences for Health

2021 ◽  
Vol 22 (7) ◽  
pp. 3772
Author(s):  
David Schuermann ◽  
Meike Mevissen

Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Claudia Consales ◽  
Caterina Merla ◽  
Carmela Marino ◽  
Barbara Benassi

Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.


2012 ◽  
Vol 10 (3) ◽  
pp. 257-267
Author(s):  
C. Corallo ◽  
M. Rigato ◽  
E. Battisti ◽  
A. Albanese ◽  
S. Gonnelli ◽  
...  

Different studies have demonstrated the efficacy of extremely low frequency electromagnetic fields (ELF EMFs) in the treatment of pain. In particular, the positive effects of ELF EMFs seems to depend on their respective codes, such as frequency, intensity and waveform, even if the exact mechanism of interaction is still debated. The most commonly used for extremely low frequency magnetotherapy is a 100Hz sinusoidal field (ELF) with a mean of induction of few Gauss. This article reviews the therapeutic application of a musically modulated electromagnetic field (TAMMEF), a new-generation of electromagnetic field used for extremely low frequency magnetotherapy characterized by variable frequencies, intensities and waveforms. Both clinical and experimental studies, performed by authors of the present review, have demonstrated the efficacy of ELF and the new TAMMEF systems in several musculoskeletal disorders such as osteoarthritis, rheumatoid arthritis, carpal tunnel syndrome, shoulder periarthritis and cervical spondylosis. Moreover, it has been demonstrated that ELF and TAMMEF systems are not only effective, but also safe, from clinical and experimental point of view. In fact, clinical trials did not reported any undesired side effect, while in vitro studies showed that ELF EMFs did not induce uncontrolled cell proliferation, did not affect cell viability and did not induce apoptosis. With their efficacy and safety, ELF and even more the new TAMMEF systems represent a valid complementary or alternative treatment to standard pharmacological therapies in reducing both pain and inflammation of patients affected by musculoskeletal disorders.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Silvano Junior Santini ◽  
Valeria Cordone ◽  
Stefano Falone ◽  
Mahmut Mijit ◽  
Carla Tatone ◽  
...  

Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.


Sign in / Sign up

Export Citation Format

Share Document