scholarly journals Identification and Characterization of Abiotic Stress Responsive CBL-CIPK Family Genes in Medicago

2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1385
Author(s):  
Jiujun Du ◽  
Lei Zhang ◽  
Xiaolan Ge ◽  
Xiaodong Xiang ◽  
Demei Cao ◽  
...  

Light is an important environmental factor for plant growth, and in higher plants, phytochrome A (phyA) is the predominant far-red photoreceptor, involved in various photoresponses. The FAR1/FHY3 transcription factor family, derived from transposases, is able to regulate plant development in response to multiple photosensitizers phytochrome. In total, 51 PtrFRSs were identified in the poplar genome, and were divided into 4 subfamilies. Among them, 47 PtrFRSs are located on 17 chromosomes. Upstream cis-acting elements of the PtrFRS genes were classified into three categories: growth and metabolism, stress and hormone, and the hormone and stress categories contained most of the cis-acting elements. Analysis of the regulatory networks and expression patterns showed that most PtrFRSs responded to changes in light intensity and were involved in the regulation of phytochromes. In this study, 51 PtrFRSs were identified and comprehensively bioinformatically analyzed, and preliminary functional analysis and prediction of PtrFRSs was carried out.


2020 ◽  
Author(s):  
Weizhuo Zhu ◽  
Dezhi Wu ◽  
Lixi Jiang ◽  
Lingzhen Ye

Abstract Background: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed.Results: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed.Conclusion: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 206 ◽  
Author(s):  
Yong Zhou ◽  
Jingwen Li ◽  
Junhong Wang ◽  
Wenting Yang ◽  
Youxin Yang

Plant glutathione peroxidase (GPX) is an important antioxidant enzyme to maintain H2O2 homeostasis and regulate plant response to abiotic stress. In this paper, we present the first report of a genome-wide identification of GPX genes in watermelon. A total of six genes (ClGPX1–ClGPX6) were identified, which were unevenly located on four chromosomes of the watermelon genome. Based on phylogenetic analysis, the GPX genes of Arabidopsis, rice, cucumber, and sorghum were classified into four groups. Through analyzing the promoter regions of ClGPX genes, many development-, stress-, and hormone-responsive cis-acting regulatory elements were also identified. Expression pattern analysis by qRT-PCR indicated that all ClGPX genes were actively expressed in flowers and fruits, and exhibited relatively lower expression in other tissues, particularly roots and stems. In addition, the expression of ClGPX genes was significantly induced by salt, drought, and cold stresses, as well as abscisic acid (ABA) treatment at different time points, suggesting that they may be involved in response to abiotic stress and ABA. Taken together, our findings demonstrated that ClGPX genes might function in watermelon development, especially in flower and fruit tissue, as well as in response to abiotic stress and hormones.


2021 ◽  
Vol 49 (1) ◽  
pp. 12191
Author(s):  
Wei ZHENG ◽  
Ziwei ZHANG ◽  
Xuefei YU ◽  
Tongtong XIE ◽  
Ning CHEN ◽  
...  

The WD40 transcription factor (TF) family is widespread in plants and plays important roles in plant growth and development, transcriptional regulation, and tolerance to abiotic stresses. WD40 TFs have been identified and characterized in a diverse series of plant species. However, little information is available on WD40 genes from D. longan. In this study, a total of 45 DlWD40 genes were identified from D. longan RNA-Seq data, and further analysed by bioinformatics tools. Also, the expression patterns of DlWD40 genes in roots and leaves, as well as responses to heat stress, were evaluated using quantitative real-time PCR (qRT-PCR). We found that the 45 DlWD40 proteins, together with 80 WD40 proteins from Arabidopsis and Zea mays, could be categorized into six groups. Of these, the DlWD40-4 protein was highly homologous to Arabidopsis WDR5a, a protein participating in tolerance to abiotic stresses. Moreover, a total of 25 cis-acting elements, such as abiotic stress and flavonoid biosynthesis elements, were found in the promoters of DlWD40 genes. The DlWD40-33 gene is targeted by miR3627, which has been proposed to be involved in flavonoid biosynthesis. Using qRT-PCR, ten of the 45 DlWD40 genes were demonstrated to have diverse expression patterns between roots and leaves, and these ten DlWD40 genes could also respond to varying durations of a 38 °C heat stress in roots and leaves. The results reported here will provide a basis for the further functional verification of DlWD40 genes in D. longan.


2020 ◽  
Author(s):  
Weizhuo Zhu ◽  
Dezhi Wu ◽  
Lixi Jiang ◽  
Lingzhen Ye

Abstract Background: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed.Results: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed.Conclusion: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


Author(s):  
Pooja Moni Baruah ◽  
Debasish B. Krishnatreya ◽  
Kuntala Sarma Bordoloi ◽  
Sarvajeet Singh Gill ◽  
Niraj Agarwala

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Teame Gereziher MEHARI ◽  
Yanchao XU ◽  
Richard Odongo MAGWANGA ◽  
Muhammad Jawad UMER ◽  
Joy Nyangasi KIRUNGU ◽  
...  

Abstract Background Cotton is an important commercial crop for being a valuable source of natural fiber. Its production has undergone a sharp decline because of abiotic stresses, etc. Drought is one of the major abiotic stress causing significant yield losses in cotton. However, plants have evolved self-defense mechanisms to cope abiotic factors like drought, salt, cold, etc. The evolution of stress responsive transcription factors such as the trihelix, a nodule-inception-like protein (NLP), and the late embryogenesis abundant proteins have shown positive response in the resistance improvement to several abiotic stresses. Results Genome wide identification and characterization of the effects of Light-Harvesting Chloro a/b binding (LHC) genes were carried out in cotton under drought stress conditions. A hundred and nine proteins encoded by the LHC genes were found in the cotton genome, with 55, 27, and 27 genes found to be distributed in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. The proteins encoded by the genes were unevenly distributed on various chromosomes. The Ka/Ks (Non-synonymous substitution rate/Synonymous substitution rate) values were less than one, an indication of negative selection of the gene family. Differential expressions of genes showed that majority of the genes are being highly upregulated in the roots as compared with leaves and stem tissues. Most genes were found to be highly expressed in MR-85, a relative drought tolerant germplasm. Conclusion The results provide proofs of the possible role of the LHC genes in improving drought stress tolerance, and can be explored by cotton breeders in releasing a more drought tolerant cotton varieties.


2000 ◽  
Vol 347 (1) ◽  
pp. 147 ◽  
Author(s):  
Emma DE FABIANI ◽  
Maurizio CRESTANI ◽  
Maria MARRAPODI ◽  
Alessandra PINELLI ◽  
Viviana GOLFIERI ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 824
Author(s):  
Fredy P. Carrera ◽  
Carlos Noceda ◽  
María G. Maridueña-Zavala ◽  
Juan M. Cevallos-Cevallos

Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document