scholarly journals CYLD Inhibits the Development of Skin Squamous Cell Tumors in Immunocompetent Mice

2021 ◽  
Vol 22 (13) ◽  
pp. 6736
Author(s):  
Josefa P. Alameda ◽  
Verónica A. García-García ◽  
Silvia López ◽  
Ana Hernando ◽  
Angustias Page ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase (DUB) enzyme that was initially characterized as a tumor suppressor of adnexal skin tumors in patients with CYLD syndrome. Later, it was also shown that the expression of functionally inactive mutated forms of CYLD promoted tumor development and progression of non-melanoma skin cancer (NMSC). However, the ability of wild-type CYLD to inhibit skin tumorigenesis in vivo in immunocompetent mice has not been proved. Herein, we generated transgenic mice that express the wild type form of CYLD under the control of the keratin 5 (K5) promoter (K5-CYLDwt mice) and analyzed the skin properties of these transgenic mice by WB and immunohistochemistry, studied the survival and proliferating characteristics of primary keratinocytes, and performed chemical skin carcinogenesis experiments. As a result, we found a reduced activation of the nuclear factor kappa B (NF-κB) pathway in the skin of K5-CYLDwt mice in response to tumor necrosis factor-α (TNF-α); accordingly, when subjected to insults, K5-CYLDwt keratinocytes are prone to apoptosis and are protected from excessive hyperproliferation. Skin carcinogenesis assays showed inhibition of tumor development in K5-CYLDwt mice. As a mechanism of this tumor suppressor activity, we found that a moderate increase in CYLD expression levels reduced NF-κB activation, which favored the differentiation of tumor epidermal cells and inhibited its proliferation; moreover, it decreased tumor angiogenesis and inflammation. Altogether, our results suggest that increased levels of CYLD may be useful for anti-skin cancer therapy.

2018 ◽  
Vol 10 (436) ◽  
pp. eaao3003 ◽  
Author(s):  
Luis A. Carvajal ◽  
Daniela Ben Neriah ◽  
Adrien Senecal ◽  
Lumie Benard ◽  
Victor Thiruthuvanathan ◽  
...  

The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell–enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.


2004 ◽  
Vol 24 (14) ◽  
pp. 6403-6409 ◽  
Author(s):  
Michael M. Schuendeln ◽  
Roland P. Piekorz ◽  
Christian Wichmann ◽  
Youngsoo Lee ◽  
Peter J. McKinnon ◽  
...  

ABSTRACT TACC2 is a member of the transforming acidic coiled-coil-containing protein family and is associated with the centrosome-spindle apparatus during cell cycling. In vivo, the TACC2 gene is expressed in various splice forms predominantly in postmitotic tissues, including heart, muscle, kidney, and brain. Studies of human breast cancer samples and cell lines suggest a putative role of TACC2 as a tumor suppressor protein. To analyze the physiological role of TACC2, we generated mice lacking TACC2. TACC2-deficient mice are viable, develop normally, are fertile, and lack phenotypic changes compared to wild-type mice. Furthermore, TACC2 deficiency does not lead to an increased incidence of tumor development. Finally, in TACC2-deficient embryonic fibroblasts, proliferation and cell cycle progression as well as centrosome numbers are comparable to those in wild-type cells. Therefore, TACC2 is not required, nonredundantly, for mouse development and normal cell proliferation and is not a tumor suppressor protein.


2000 ◽  
Vol 68 (10) ◽  
pp. 6005-6011 ◽  
Author(s):  
Padraic G. Fallon ◽  
Philip Smith ◽  
Emma J. Richardson ◽  
Frances J. Jones ◽  
Helen C. Faulkner ◽  
...  

ABSTRACT Mice infected with Schistosoma mansoni develop Th2 cytokine-mediated granulomatous pathology that is focused on the liver and intestines. In this study, transgenic mice constitutively expressing IL-9 were infected with S. mansoni and the outcome of infection was determined. Eight weeks after infection, transgenic mice with acute infections had a moderate increase in Th2 cytokine production but were overtly normal with respect to parasite infection and pathological responses. Transgenic mice with chronic infections died 10 weeks after infection, with 86% of transgenic mice dead by week 12 of infection, compared to 7% mortality in infected wild-type mice. Stimulation of mesenteric lymph node cells from infected transgenic mice with parasite antigen elicited elevated interleukin-4 (IL-4) and IL-5 production and reduced gamma interferon and tumor necrosis factor alpha production compared to the responses in wild-type mice. Morbid transgenic mice had substantial enlargement of the ileum, which was associated with muscular hypertrophy, mastocytosis, eosinophilia, goblet cell hyperplasia, and increased mucin expression. We also observed that uninfected transgenic mice exhibited alterations in their intestines. Although there was hepatic mastocytosis and eosinophilia in infected transgenic mice, there was no hepatocyte damage. Death of transgenic mice expressing IL-9 during schistosome infection was primarily associated with enteropathy. This study highlights the pleiotropic in vivo activity of IL-9 and demonstrates that an elevated Th2 cytokine phenotype leads to death during murine schistosome infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kelly E. Johnson ◽  
Traci A. Wilgus

Vascular endothelial growth factor (VEGF) is known to play a critical role in the development of non-melanoma skin cancers. VEGF is a potent pro-angiogenic factor and it is elevated in mouse and human skin tumors. The use of transgenic and knockout mice has shown that VEGF is essential for tumor development in multiple models of skin carcinogenesis and, until recently, the mechanism of action has been primarily attributed to the induction of angiogenesis. However, additional roles for VEGF have now been discovered. Keratinocytes can respond directly to VEGF, which could influence skin carcinogenesis by altering proliferation, survival, and stemness.In vivostudies have shown that loss of epidermal VEGFR-1 or neuropillin-1 inhibits carcinogenesis, indicating that VEGF can directly affect tumor cells. Additionally, VEGF has been shown to promote tumor growth by recruiting macrophages to skin tumors, which likely occurs through VEGFR-1. Overall, these new studies show that VEGF carries out functions beyond its well-established effects on angiogenesis and highlight the need to consider these alternative activities when developing new treatments for non-melanoma skin cancer.


2003 ◽  
Vol 14 (3) ◽  
pp. 1027-1042 ◽  
Author(s):  
Terence M. Williams ◽  
Michelle W.-C. Cheung ◽  
David S. Park ◽  
Babak Razani ◽  
Alex W. Cohen ◽  
...  

Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (−/−) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 ± 1.0 vs. 7.0 ± 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/−) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (−/−) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.


2005 ◽  
Vol 79 (18) ◽  
pp. 11618-11626 ◽  
Author(s):  
Erica Marchlik ◽  
Richard Kalman ◽  
Naomi Rosenberg

ABSTRACT The Abelson murine leukemia virus (Ab-MLV), like other retroviruses that contain v-onc genes, arose following a recombination event between a replicating retrovirus and a cellular oncogene. Although experimentally validated models have been presented to address the mechanism by which oncogene capture occurs, very little is known about the events that influence emerging viruses following the recombination event that incorporates the cellular sequences. One feature that may play a role is the genetic makeup of the host in which the virus arises; a number of host genes, including oncogenes and tumor suppressor genes, have been shown to affect the pathogenesis of many murine leukemia viruses. To examine how a host gene might affect an emerging v-onc gene-containing retrovirus, we studied the weakly oncogenic Ab-MLV-P90A strain, a mutant that generates highly oncogenic variants in vivo, and compared the viral populations in normal mice and mice lacking the p53 tumor suppressor gene. While variants arose in both p53 +/+ and p53 − / − tumors, the samples from the wild-type animals contained a more diverse virus population. Differences in virus population diversity were not observed when wild-type and null animals were infected with a highly oncogenic wild-type strain of Ab-MLV. These results indicate that p53, and presumably other host genes, affects the selective forces that operate on virus populations in vivo and likely influences the evolution of oncogenic retroviruses such as Ab-MLV.


Author(s):  
Jayarani F. Putri ◽  
Priyanshu Bhargava ◽  
Jaspreet Kaur Dhanjal ◽  
Tomoko Yaguchi ◽  
Durai Sundar ◽  
...  

Abstract Background Mortalin is enriched in a large variety of cancers and has been shown to contribute to proliferation and migration of cancer cells in multiple ways. It has been shown to bind to p53 protein in cell cytoplasm and nucleus causing inactivation of its tumor suppressor activity in cancer cells. Several other activities of mortalin including mitochondrial biogenesis, ATP production, chaperoning, anti-apoptosis contribute to pro-proliferative and migration characteristics of cancer cells. Mortalin-compromised cancer cells have been shown to undergo apoptosis in in vitro and in vivo implying that it could be a potential target for cancer therapy. Methods We implemented a screening of a chemical library for compounds with potential to abrogate cancer cell specific mortalin-p53 interactions, and identified a new compound (named it as Mortaparib) that caused nuclear enrichment of p53 and shift in mortalin from perinuclear (typical of cancer cells) to pancytoplasmic (typical of normal cells). Biochemical and molecular assays were used to demonstrate the effect of Mortaparib on mortalin, p53 and PARP1 activities. Results Molecular homology search revealed that Mortaparib is a novel compound that showed strong cytotoxicity to ovarian, cervical and breast cancer cells. Bioinformatics analysis revealed that although Mortaparib could interact with mortalin, its binding with p53 interaction site was not stable. Instead, it caused transcriptional repression of mortalin leading to activation of p53 and growth arrest/apoptosis of cancer cells. By extensive computational and experimental analyses, we demonstrate that Mortaparib is a dual inhibitor of mortalin and PARP1. It targets mortalin, PARP1 and mortalin-PARP1 interactions leading to inactivation of PARP1 that triggers growth arrest/apoptosis signaling. Consistent with the role of mortalin and PARP1 in cancer cell migration, metastasis and angiogenesis, Mortaparib-treated cells showed inhibition of these phenotypes. In vivo tumor suppression assays showed that Mortaparib is a potent tumor suppressor small molecule and awaits clinical trials. Conclusion These findings report (i) the discovery of Mortaparib as a first dual inhibitor of mortalin and PARP1 (both frequently enriched in cancers), (ii) its molecular mechanism of action, and (iii) in vitro and in vivo tumor suppressor activity that emphasize its potential as an anticancer drug.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1992-1992
Author(s):  
Paolo Neviani ◽  
Ramasamy Santhanam ◽  
Rossana Trotta ◽  
Mario Notari ◽  
Bradley W. Blaser ◽  
...  

Abstract A tight control of kinase and phosphatase activity is fundamental for normal cell growth, survival and differentiation. The deregulated kinase activity of the BCR/ABL oncoprotein is responsible for the emergence and maintenance of chronic myelogenous leukemia (CML). By contrast, PP2A, a serine-threonine phosphatase involved in the regulation of many cellular functions, was found genetically inactivated in many types of cancer. We show here that, in BCR/ABL-transformed cells and CD34+ CML blast crisis progenitors, the phosphatase activity of the tumor suppressor PP2A is inhibited by the physiological PP2A-inhibitor SET whose expression is enhanced by BCR/ABL and increased in blast crisis CML. In imatinib-sensitive and -resistant (T315I included) BCR/ABL+ cell lines and in CD34+ CML blast crisis cells, molecular and/or pharmacological activation of PP2A leads to dephosphorylation of important regulators of proliferation and survival of CML progenitors, suppresses BCR/ABL kinase activity and promotes BCR/ABL proteasome degradation via a mechanism that requires the SHP-1 tyrosine phosphatase activity. Furthermore, PP2A activation achieved by shRNA-mediated SET knock-down or PP2Ac overexpression or treatment with the PP2A activator forskolin results in growth suppression, enhanced apoptosis, restored differentiation, impaired clonogenic potential and decreased in vivo leukemogenesis of wild type and T315I BCR/ABL-transformed myeloid cells. Thus, functional inactivation of PP2A phosphatase activity is essential for BCR/ABL leukemogenesis and, perhaps, required for transition of CML into blast crisis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 711-711
Author(s):  
Srimoyee Ghosh ◽  
Sergei B Koralov ◽  
Irena Stevanovic ◽  
Mark S Sundrud ◽  
Yoshiteru Sasaki ◽  
...  

Abstract Abstract 711 Naïve CD4 T cells differentiate into diverse effector and regulatory subsets to coordinate the adaptive immune response. TH1 and TH2 effector subsets produce IFN-γ and IL-4, respectively, whereas proinflammatory TH17 cells are key regulators of autoimmune inflammation, characteristically produce IL-17 and IL-22 and differentiate in the presence of inflammatory cytokines like IL-6 and IL-21 together with TGF-β. Naive T cells can also differentiate into tissue-protective induced T regulatory (iTreg) cells. NFAT proteins are highly phosphorylated and reside in the cytoplasm of resting cells. Upon dephosphorylation by the Ca2+/calmodulin-dependent serine phosphatase calcineurin, NFAT proteins translocate to the nucleus, where they orchestrate developmental and activation programs in diverse cell types. In this study, we investigated the role of the Ca/NFAT signaling pathway in regulating T cell differentiation and the development of autoimmune diseases. We generated transgenic mice conditionally expressing a hyperactivable version of NFAT1 (AV-NFAT1) from the ROSA26 locus. To restrict AV-NFAT1 expression to the T cell compartment, ROSA26-AV-NFAT1 transgenic mice were bred to CD4-Cre transgenic mice. Naïve CD4 T cells freshly isolated from AV mice produced significantly less IL-2 but increased amounts of the inhibitory cytokine IL-10. To investigate the role of NFAT1 in the generation of TH1, TH2, Tregand TH17 cells, the respective cell types were generated from CD4 T cells of AV mice by in vitro differentiation. T cells from AV-NFAT1 mice exhibited a dysregulation of cytokine expression, producing more IFN-γ and less IL-4. While the numbers of CD4+CD25+ “natural” Treg cells in peripheral lymphoid organs and their in vitro suppressive functions were slightly decreased in AV mice, iTreg generation from CD4+CD25- T cells of AV mice as compared to wild type cells was markedly enhanced. Moreover, TH17 cells generated in vitro from CD4 T cells of AV mice in the presence of IL-6, IL-21 and TGF-β exhibited dramatically increased expression of both IL-10 and IL-17 as compared to wild type controls. To investigate putative NFAT binding sites in the IL-10 and IL-17 gene loci, we performed chromatin immunoprecipitation experiments. We show that NFAT1 can bind at the IL-17 locus at 3 out of 9 CNS regions which are accessible specifically during TH17 but not during TH1 and TH2 differentiation. Furthermore, we provide evidence that NFAT1 binds one CNS region in the IL10-locus in TH17 cells. To verify our observations in vivo, we induced experimental autoimmune encephalitis (EAE) in AV mice and wild type controls with the immunodominant myelin antigen MOG33-55 emulsified in complete Freund‘s adjuvant. While wild type animals showed a normal course of disease with development of tail and hind limb paralysis after approximately 10 days, AV mice showed a markedly weaker disease phenotype with less severe degrees of paralysis and accelerated kinetics of remission. Moreover at the peak of the response, there were fewer CD4+CD25- but more CD4+CD25+ T cells in the CNS of AV animals compared to wild type controls. Surprisingly, these cells produced significantly more IL-2, IL-17 and IFN-γ upon restimulation, even though they displayed decreased disease. In summary, our data provide strong evidence that NFAT1 contributes to the regulation of IL-10 and IL-17 expression in TH17 cells and show that increasing NFAT1 activity can ameliorate autoimmune encephalitis. This could occur in part through upregulation of IL-10 expression as observed in vitro, but is also likely to reflect increased infiltration of regulatory T cells into the CNS as well as increased conversion of conventional T cells into Foxp3+ regulatory T cells within the CNS. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 512-512
Author(s):  
Anupriya Agarwal ◽  
Ryan J Meckenzie ◽  
Thomas O'Hare ◽  
Kavin B Vasudevan ◽  
Dorian H LaTocha ◽  
...  

Abstract Abstract 512 Background: BCR-ABL promotes cell cycle progression by interfering with the regulatory functions of p27, a cyclin dependent kinase (Cdk) inhibitor and tumor suppressor. We have previously shown that BCR-ABL kinase activity promotes degradation of nuclear p27 (Agarwal, A. et al. Blood 2008). Additionally, in primary CML cells, p27 is mislocalized to the cytoplasm, thereby relieving Cdks from p27 inhibition. Results from studies of solid tumors show that cytoplasmic p27 can actively contribute to oncogenesis, raising the question of whether cytoplasmic p27 in CML cells may actively promote leukemogenesis rather than merely compromise Cdk inhibition. We hypothesize that BCR-ABL disrupts p27 function in a dual manner by reducing nuclear p27, where p27 normally serves as a tumor suppressor, and by increasing cytoplasmic p27, where it might have oncogenic activity. Experimental Approach and Results: Immunoblotting of nuclear and cytoplasmic lysates of CD34+ cells from 11 CML patients revealed that p27 localization is predominantly cytoplasmic in the majority of patients (10/11; 91%) irrespective of disease phase, while p27 was mostly nuclear in normal controls. Similar results were obtained by immunofluorescence microscopy. Imatinib treatment increased nuclear p27 suggesting that nuclear p27 levels are regulated by BCR-ABL kinase activity. However, imatinib does not alter cytoplasmic p27 levels, suggesting that cytoplasmic mislocalization of p27 is a kinase-independent effect of BCR-ABL. Kinase-independent regulation of cytoplasmic p27 localization was also tested by immunofluorescence microscopy of p27−/− MEFs engineered to express active or kinase-dead BCR-ABL in combination with wild-type p27. In these cells cytoplasmic p27 abundance was increased both by kinase-active or kinase-dead BCR-ABL as compared to the vector control. To interrogate the role of p27 in vivo we retrovirally transduced p27+/+ or p27−/− bone marrow with BCR-ABL-GFP retrovirus and sorted Lin-/c-Kit+/Sca-I+ cells by FACS, allowing for injection of exactly matched numbers of BCR-ABL-expressing GFP+ cells (5000/animal). Median survival was significantly reduced for recipients of p27−/− marrow as compared to p27+/+ controls (34 days vs. 93 days p<0.0001). Recipients of p27−/− marrow also exhibited significantly increased white blood cell (4.5-fold) and platelet counts (3.9-fold) as well as spleen size (6-fold) and liver size (1.6-fold). Accordingly, there was more pronounced leukemic infiltration of myeloid precursors on histopathology as compared to controls. An in vivo competition experiment performed by injecting equal numbers of BCR-ABL-transduced p27−/− and p27+/+ marrow cells in congenic recipients resulted in leukemias in recipient mice (N=8) that were derived exclusively from p27−/− cells. In total, these results suggest that the net function of p27 in CML is tumor suppressive. To functionally dissect the role of nuclear and cytoplasmic p27, we used p27T187A transgenic mice (in which nuclear p27 degradation is reduced) and p27S10A mice (in which p27 export to the cytoplasm is reduced resulting in predominantly nuclear p27). Mice of matched genetic background were used as p27WT controls in CML retroviral transduction/transplantation experiments. In both cases, survival was prolonged compared to controls: 25 vs. 21 days for p27T187A (p=0.05) and 32 vs. 23 days for p27S10A (p=0.01). This suggests that stabilization of nuclear p27 (p27T187A) and more significantly lack of cytoplasmic p27 (p27S10A) attenuate BCR-ABL-mediated leukemogenesis. Consistent with this, autopsy and histopathological analysis revealed reduced hepatosplenomegaly (p27T187A mice) and improved cell differentiation with a relative increase of mature neutophils (p27S10A mice) as compared to wild-type controls. Conclusions: These results provide in vivo evidence that p27 has genetically separable dual roles in CML as both a nuclear tumor suppressor and cytoplasmic oncogene. A kinase-independent activity of BCR-ABL contributes to leukemogenesis through aberrant p27 localization to the cytoplasm. This oncogene activity is independent from the kinase-dependent degradation of nuclear p27. We speculate that the inability of tyrosine kinase inhibitors to reverse cytoplasmic p27 mislocalization may contribute to disease persistence despite effective inhibition of BCR-ABL kinase activity. Disclosures: Deininger: Novartis: Consultancy; BMS: Consultancy; Ariad: Consultancy; genzyme: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document