scholarly journals Metallacarborane Derivatives Effective against Pseudomonas aeruginosa and Yersinia enterocolitica

2021 ◽  
Vol 22 (13) ◽  
pp. 6762
Author(s):  
Wieslaw Swietnicki ◽  
Waldemar Goldeman ◽  
Mateusz Psurski ◽  
Anna Nasulewicz-Goldeman ◽  
Anna Boguszewska-Czubara ◽  
...  

Pseudomonas aeruginosa is an opportunistic human pathogen that has become a nosocomial health problem worldwide. The pathogen has multiple drug removal and virulence secretion systems, is resistant to many antibiotics, and there is no commercial vaccine against it. Yersinia pestis is a zoonotic pathogen that is on the Select Agents list. The bacterium is the deadliest pathogen known to humans and antibiotic-resistant strains are appearing naturally. There is no commercial vaccine against the pathogen, either. In the current work, novel compounds based on metallacarborane cage were studied on strains of Pseudomonas aeruginosa and a Yersinia pestis substitute, Yersinia enterocolitica. The representative compounds had IC50 values below 10 µM against Y. enterocolitica and values of 20–50 μM against P. aeruginosa. Artificial generation of compound-resistant Y. enterocolitica suggested a common mechanism for drug resistance, the first reported in the literature, and suggested N-linked metallacarboranes as impervious to cellular mechanisms of resistance generation. SEM analysis of the compound-resistant strains showed that the compounds had a predominantly bacteriostatic effect and blocked bacterial cell division in Y. enterocolitica. The compounds could be a starting point towards novel anti-Yersinia drugs and the strategy presented here proposes a mechanism to bypass any future drug resistance in bacteria.

2021 ◽  
Author(s):  
Lulu Yang ◽  
Fangyan Jiao ◽  
Ousman Bajinka ◽  
Khalid A Abdelhalim ◽  
Guojun Wu ◽  
...  

Abstract Background: This study was designed to detect the molecular epidemiological characteristics and resistant mechanism of carbapenem resistant Pseudomonas aeruginosa (CRPA) which provide reference for the prevention and treatment of hospital CRPA infection. Methods: 34 strains of CRPA from 2018 to 2019 were isolated and their resistance to 13 commonly used antibiotics was detected using TDR-300B Plus VitEK-2 compact automatic bacterial identification instrument. Then carbapenemase production was detected using Carbe NP test. The efflux pumps MexA and outer membrane protein OprD proteins were detected using RT-PCR and class Ⅰ integron carried with drug-resistant genes were detected using PCR and sequences analysis. Results: Among 34 strains of CRPA, 22 strains were multiple drug resistance (MDR) and 5 strains were extensively drug-resistant (XDR). The results of class Ⅰ integron carried drug-resistant gene sequencing analysis showed the class Ⅰ integron mainly carried aminoglycoside or quinolone antibacterial drug resistant genes. Conclusion: Multiple mechanisms play an important role in the formation and development of MDR or XDR resistance.


2019 ◽  
Vol 366 (16) ◽  
Author(s):  
Erjie Tian ◽  
Ishfaq Muhammad ◽  
Wanjun Hu ◽  
Zhiyong Wu ◽  
Rui Li ◽  
...  

ABSTRACT Escherichia coli are important foodborne zoonotic pathogens. Apramycin is a key aminoglycoside antibiotic used by veterinarians against E. coli. This study was conducted to establish the epidemiological cut-off value (ECV) and resistant characteristics of apramycin against E. coli. In this study, 1412 clinical isolates of E. coli from chickens in China were characterized. Minimum inhibitory concentrations (MICs) of apramycin were assessed by broth microdilution method. MIC50 and MIC90 for apramycin against E. coli (0.5–256 µg/mL) were 8 and 16 µg/mL, respectively. In this study, the tentative ECV was determined to be 16 µg/mL by the statistical method and 32 µg/mL by ECOFFinder software. Besides, the percentages of aac(3)-IV positive strains ascended with the increase of MIC values of apramycin, and the gene npmA was detected in strains with higher MICs. Sixteen apramycin highly resistant strains displayed multiple drug resistance (100%) to amoxicillin, ampicillin, gentamicin, doxycycline, tetracycline, trimethoprim and florfenicol, while most of them were susceptible to amikacin and spectinomycin. In summary, the tentative ECV of apramycin against E. coli was recommended to be 16 µg/mL.


1984 ◽  
Vol 92 (1) ◽  
pp. 59-65 ◽  
Author(s):  
SP. Sundaram ◽  
K. V. Murthy

SUMMARYA total of 289 non-O1 Vibrio cholerae (NVC) strains and 20 rough V. cholerae (RVC) strains isolated in an endemic area were tested for antibiotic resistance and for transferable R-plasmids. Twenty three per cent of NVC and 40% of the RVC isolates were found to be resistant to one or more drugs. Eight NVC and four RVC strains possessed multiple drug resistance, varying from four to eight drugs. The common spectrum found in NVC isolates were chloramphenicol and streptomycin (CS) or chloramphenicol, streptomycin, tetracycline and ampicillin (CSTA). Resistance to sulphamethoxazole (Su) and to trimethoprim (Tm) was encountered infrequently. In RVC isolates in addition CSTASuTm determinants, resistance markers to aminoglycosides kanamycin, gentamicin and neomycin were also found. Eighteen of the 27 V. cholerae strains with two or more resistance determinants transferred them en bloc to Escherichia coli K12. The level of resistance in the recipient strain was equal to or greater than that of the donor vibrio strains. Most of the strains possessing solitary resistance markers were unable to transfer them. βlactamase production could be demonstrated in 92·8% of the ampicillin resistant strains. None of the strains was resistant to nalidixic acid or furazolidone. The results emphasize the importance of antimicrobic susceptibility determination of V. cholerae isolates, regardless of the serotypes, before commencing chemotherapy.


2008 ◽  
Vol 52 (11) ◽  
pp. 3829-3836 ◽  
Author(s):  
Jing-Cao Pan ◽  
Rong Ye ◽  
Hao-Qiu Wang ◽  
Hai-Qing Xiang ◽  
Wei Zhang ◽  
...  

ABSTRACT A conjugative plasmid, pMRV150, which mediated multiple-drug resistance (MDR) to at least six antibiotics, including ampicillin, streptomycin, gentamicin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole, was identified in a Vibrio cholerae O139 isolate from Hangzhou, eastern China, in 2004. According to partial pMRV150 DNA sequences covering 15 backbone regions, the plasmid is most similar to pIP1202, an IncA/C plasmid in an MDR Yersinia pestis isolate from a Madagascar bubonic plague patient, at an identity of 99.99% (22,180/22,183 nucleotides). pMRV150-like plasmids were found in only 7.69% (1/13) of the O139 isolates tested during the early period of the O139 epidemic in Hangzhou (1994, 1996, and 1997); then the frequency increased gradually from 60.00% (3/5) during 1998 and 1999 to 92.16% (47/51) during 2000 to 2006. Most (42/51) of the O139 isolates bearing pMRV150-like plasmids were resistant to five to six antibiotics, whereas the plasmid-negative isolates were resistant only to one to three antibiotics. In 12 plasmid-bearing O139 isolates tested, the pMRV150-like plasmids ranged from approximately 140 kb to 170 kb and remained at approximately 1 or 2 copies per cell. High (4.50 × 10−2 and 3.08 × 10−2) and low (0.88 × 10−8 to 3.29 × 10−5) plasmid transfer frequencies, as well as no plasmid transfer (under the detection limit), from these O139 isolates to the Escherichia coli recipient were observed. The emergence of pMRV150-like or pIP1202-like plasmids in many bacterial pathogens and nonpathogens occupying diverse niches with global geographical distribution indicates an increasing risk to public health worldwide. Careful tracking of these plasmids in the microbial ecosystem is warranted.


Author(s):  
V. N. Danilenko

This article tackles the issue of the growing morbidity and mortality caused by multi-drug-resistant (extreme drug-resistant) tuberculosis (TB). This issue is aggravated by the alarming rise of immunocompromized patients and immigration worldwide. In order to solve this problem, an interdisciplinary approach is needed. Here we offer to: (1) develop innovative diagnostic techniques for identifying dangerous lineages of TB with mutations and drug resistance genes; (2) develop antibiotics with new modes of action effective against multiple drug resistance and extreme drug-resistant strains of TB and HIV; (3) develop new genetically engineered vaccines; and, (4) develop new vaccine adjuvants based on probiotic Lactobacillus and Bifidobacterium stains, with selective immunomodulatory activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Sima Tokajian ◽  
Dominik Haddad ◽  
Rana Andraos ◽  
Fuad Hashwa ◽  
George Araj

Molecular characterization of Staphylococcus aureus is of both clinical and infection control importance. Virulence determinants using PCR and multiple drug resistance profiles were studied in 130 S. aureus isolates. PCR-RFLP analysis of the 16S–23S DNA spacer region was done to investigate the level of 16S–23S ITS (internal transcribed spacer) polymorphism. Methicillin-resistant S. aureus (MRSA), which represented 72% of the studied isolates, showed multiple drug resistance with 18% being resistant to 10–18 of the drugs used compared to a maximum resistance to 9 antibiotics with the methicillin sensitive S. aureus (MSSA) isolates. Exfoliative toxin A (ETA) was more prevalent than B (ETB) with virulent determinants being additionally detected in multiple drug-resistant isolates. 16S–23S ITS PCR-RFLP combined with sequencing of the primary product was successful in generating molecular fingerprints of S. aureus and could be used for preliminary typing. This is the first study to demonstrate the incidence of virulent genes, ACME, and genetic diversity of S. aureus isolates in Lebanon. The data presented here epitomize a starting point defining the major genetic populations of both MRSA and MSSA in Lebanon and provide a basis for clinical epidemiological studies.


Sign in / Sign up

Export Citation Format

Share Document