scholarly journals Peculiarities of Neurostimulation by Intense Nanosecond Pulsed Electric Fields: How to Avoid Firing in Peripheral Nerve Fibers

2021 ◽  
Vol 22 (13) ◽  
pp. 7051
Author(s):  
Vitalii Kim ◽  
Emily Gudvangen ◽  
Oleg Kondratiev ◽  
Luis Redondo ◽  
Shu Xiao ◽  
...  

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.

2020 ◽  
Vol 13 (12) ◽  
pp. 2145-2155
Author(s):  
Sofia Melchior ◽  
Sonia Calligaris ◽  
Giulia Bisson ◽  
Lara Manzocco

Abstract Aim The effect of moderate-intensity pulsed electric fields (MIPEF) was evaluated on vegetable protein concentrates from pea, rice, and gluten. Methods Five percent (w/w) suspensions of protein concentrates (pH 5 and 6) were exposed to up to 60,000 MIPEF pulses at 1.65 kV/cm. Both structural modifications (absorbance at 280 nm, free sulfhydryl groups, FT-IR-spectra) and functional properties (solubility, water and oil holding capacity, foamability) were analyzed. Results MIPEF was able to modify protein structure by inducing unfolding, intramolecular rearrangement, and formation of aggregates. However, these effects were strongly dependent on protein nature and pH. In the case of rice and pea samples, structural changes were associated with negligible modifications in functional properties. By contrast, noticeable changes in these properties were observed for gluten samples, especially after exposure to 20,000 pulses. In particular, at pH 6, an increase in water and oil holding capacity of gluten was detected, while at pH 5, its solubility almost doubled. Conclusion These results suggest the potential of MIPEF to steer structure of proteins and enhance their technological functionality.


2020 ◽  
Author(s):  
Dagmar Ammelt ◽  
Alica Lammerskitten ◽  
Artur Wiktor ◽  
Francisco J. Barba ◽  
Stefan Toepfl ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1146
Author(s):  
Kaidi Peng ◽  
Mohamed Koubaa ◽  
Olivier Bals ◽  
Eugène Vorobiev

The aim of this work was to investigate the effect of pulsed electric fields (PEF) on the growth and acidification kinetics of Lactobacillus delbrueckii subsp. bulgaricus CFL1 during fermentation. The PEF treatments were applied during the fermentation process using a recirculation pump and a PEF treatment chamber coupled with a PEF generator. The medium flow rate through the chamber was first optimized to obtain the same growth and acidification kinetics than the control fermentation without medium recirculation. Different PEF intensities (60–428 V cm−1) were then applied to the culture medium to study the impact of PEF on the cells’ behavior. The growth and acidification kinetics were recorded during the fermentation and the specific growth rates µ, pH, and acidification rate (dpH/dt) were assessed. The results obtained showed a biphasic growth by applying high PEF intensities (beyond 285 V cm−1) with the presence of two maximal specific growth rates and a decrease in the acidification activities. It was demonstrated that the cells were stressed during the PEF treatment, but presented an accelerated growth after stopping it, leading thereby to similar absorbance and pH at the end of the fermentation. These results show the great potential of PEF technology to be applied to generate low acidified products by performing PEF-assisted fermentations.


Author(s):  
Dagmar Ammelt ◽  
Alica Lammerskitten ◽  
Artur Wiktor ◽  
Francisco J. Barba ◽  
Stefan Toepfl ◽  
...  

2017 ◽  
Vol 236 ◽  
pp. 94-100 ◽  
Author(s):  
Nicolò Dellarosa ◽  
Daniele Frontuto ◽  
Luca Laghi ◽  
Marco Dalla Rosa ◽  
James G. Lyng

Sign in / Sign up

Export Citation Format

Share Document