scholarly journals The Arabidopsis Iron-Sulfur (Fe-S) Cluster Gene MFDX1 Plays a Role in Host and Nonhost Disease Resistance by Accumulation of Defense-Related Metabolites

2021 ◽  
Vol 22 (13) ◽  
pp. 7147
Author(s):  
Jose Pedro Fonseca ◽  
Sunhee Oh ◽  
Clarissa Boschiero ◽  
Bonnie Watson ◽  
David Huhman ◽  
...  

Until recently, genes from the iron-sulfur (Fe-S) cluster pathway were not known to have a role in plant disease resistance. The Nitrogen Fixation S (NIFS)-like 1 (NFS1) and Mitochondrial Ferredoxin-1 (MFDX1) genes are part of a set of 27 Fe-S cluster genes induced after infection with host and nonhost pathogens in Arabidopsis. A role for AtNFS1 in plant immunity was recently demonstrated. In this work, we showed that MFDX1 is also involved in plant defense. More specifically, Arabidopsis mfdx1 mutants were compromised for nonhost resistance against Pseudomonas syringae pv. tabaci, and showed increased susceptibility to the host pathogen P. syringae pv. tomato DC3000. Arabidopsis AtMFDX1 overexpression lines were less susceptible to P. syringae pv. tomato DC3000. Metabolic profiling revealed a reduction of several defense-related primary and secondary metabolites, such as asparagine and glucosinolates in the Arabidopsis mfdx1-1 mutant when compared to Col-0. A reduction of 5-oxoproline and ornithine metabolites that are involved in proline synthesis in mitochondria and affect abiotic stresses was also observed in the mfdx1-1 mutant. In contrast, an accumulation of defense-related metabolites such as glucosinolates was observed in the Arabidopsis NFS1 overexpressor when compared to wild-type Col-0. Additionally, mfdx1-1 plants displayed shorter primary root length and reduced number of lateral roots compared to the Col-0. Taken together, these results provide additional evidence for a new role of Fe-S cluster pathway in plant defense responses.

2007 ◽  
Vol 20 (5) ◽  
pp. 589-596 ◽  
Author(s):  
Günter Brader ◽  
Armin Djamei ◽  
Markus Teige ◽  
E. Tapio Palva ◽  
Heribert Hirt

The Arabidopsis mitogen-activated protein kinase (MAPK) kinase 2 (MKK2) was shown to mediate cold and salt stress responses through activation of the two MAP kinases MPK4 and MPK6. Transcriptome analysis of plants expressing constitutively active MKK2 (MKK2-EE plants) showed altered expression of genes induced by abiotic stresses but also a significant number of genes involved in defense responses. Both MPK4 and MPK6 became rapidly activated upon Pseudomonas syringae pv. tomato DC3000 infection and MKK2-EE plants showed enhanced levels of MPK4 activation. Although MKK2-EE plants shared enhanced expression of genes encoding enzymes of ethylene (ET) and jasmonic acid (JA) synthesis, ET, JA, and salicylic acid (SA) levels did not differ dramatically from those of wild-type or mkk2-null plants under ambient growth conditions. Upon P. syringae pv. tomato DC3000 infection, however, MKK2-EE plants showed reduced increases of JA and SA levels. These results indicate that MKK2 is involved in regulating hormone levels in response to pathogens. MKK2-EE plants were more resistant to infection by P. syringae pv. tomato DC3000 and Erwinia carotovora subsp. carotovora, but showed enhanced sensitivity to the fungal necrotroph Alternaria brassicicola. Our data indicate that MKK2 plays a role in abiotic stress tolerance and plant disease resistance.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 439-450 ◽  
Author(s):  
Diya Banerjee ◽  
Xiaochun Zhang ◽  
Andrew F Bent

Abstract Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F2 and F3 progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1705
Author(s):  
András Künstler ◽  
Gábor Gullner ◽  
Attila L. Ádám ◽  
Judit Kolozsváriné Kolozsváriné Nagy ◽  
Lóránt Király

Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.


2009 ◽  
Vol 22 (5) ◽  
pp. 498-506 ◽  
Author(s):  
Yi Wang ◽  
Zhilong Bao ◽  
Ying Zhu ◽  
Jian Hua

Plant-pathogen interactions are known to be affected by environmental factors including temperature; however, the temperature effects have not been systematically studied in plant disease resistance. Here, we characterized the effects of a moderate increase in temperature on resistance to bacterial pathogen Pseudomonas syringae and two viral elicitors in Arabidopsis thaliana and Nicotiana benthamiana. Both the basal and the resistance (R) gene–mediated defense responses to Pseudomonas syringae are found to be inhibited by a moderately high temperature, and hypersensitive responses induced by R genes against two viruses are also reduced by an increase of temperature. These indicate that temperature modulation of defense responses to biotrophic and hemibiotrophic pathogens might be a general phenomenon. We further investigated the roles of two small signaling molecules, salicylic acid and jasmonic acid, as well as two defense regulators, EDS1 and PAD4, in this temperature modulation. These components, though modulated by temperature or involved in temperature regulation or both, are not themselves determinants of temperature sensitivity in the defense responses analyzed. The inhibition of plant defense response by a moderately high temperature may thus be mediated by other defense signaling components or a combination of multiple factors.


2021 ◽  
Author(s):  
Catalina Rodriguez-Puerto ◽  
Rupak Chakraborty ◽  
Raksha Singh ◽  
Perla Rocha-Loyola ◽  
Clemencia M. Rojas

The plant pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) has become a paradigm in plant-bacteria interactions due to its ability to cause disease in the model plant Arabidopsis thaliana. Pst DC3000 uses the type III secretion system to deliver type III secreted effectors (T3SEs) directly into the plant cytoplasm. Pst DC3000 T3SEs contribute to pathogenicity by suppressing plant defense responses and targeting plant’s physiological processes. Although the complete repertoire of effectors encoded in the Pst DC3000 genome have been identified, the specific function for most of them remains to be elucidated. The mitochondrial-localized T3E HopG1, suppresses plant defense responses and promotes the development of disease symptoms. Here, we show that HopG1 triggers necrotic cell death that enables the growth of non-adapted pathogens. We further showed that HopG1 interacts with the plant immunity-related protein AtNHR2B and that AtNHR2B attenuates HopG1- virulence functions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Huijuan Zhang ◽  
Longfei Yin ◽  
Fengming Song ◽  
Ming Jiang

SKIP, a component of the spliceosome, is involved in numerous signaling pathways. However, there is no direct genetic evidence supporting the function of SKIP in defense responses. In this paper, two SKIPs, namely, SlSKIP1a and SlSKIP1b, were analyzed in tomato. qRT-PCR analysis showed that the SlSKIP1b expression was triggered via Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea (B. cinerea), together with the defense-associated signals. In addition, the functions of SlSKIP1a and SlSKIP1b in disease resistance were analyzed in tomato through the virus-induced gene silencing (VIGS) technique. VIGS-mediated SlSKIP1b silencing led to increased accumulation of reactive oxygen species (ROS), along with the decreased expression of defense-related genes (DRGs) after pathogen infection, suggesting that it reduced B. cinerea and Pst DC3000 resistance. There was no significant difference in B. cinerea and Pst DC3000 resistance in TRV-SlSKIP1a-infiltrated plants compared with the TRV-GUS-silencing counterparts. As suggested by the above findings, SlSKIP1b plays a vital role in disease resistance against pathogens possibly by regulating the accumulation of ROS as well as the expression of DRGs.


2005 ◽  
Vol 18 (10) ◽  
pp. 1054-1060 ◽  
Author(s):  
Walter Gassmann

The plant hypersensitive response (HR) is tightly associated with gene-for-gene resistance and has been proposed to function in containing pathogens at the invasion site. This tight association has made it difficult to unequivocally evaluate the importance of HR for plant disease resistance. Here, hopPsyA from Pseudomonas syringae pv. syringae 61 is identified as a new avirulence gene for Arabidopsis that triggers resistance in the absence of macroscopic HR. Resistance to P. syringae pv. tomato DC3000 expressing hopPsyA was EDS1-dependent and NDR1-independent. Intriguingly, several Arabidopsis accessions were resistant to DC3000(hopPsyA) in the absence of HR. This is comparable to the Arabidopsis response to avrRps4, but it is shown that hopPsyA does not signal through RPS4. In a cross between two hopPsyA-resistant accessions that differ in their HR response, the HR segregated as a recessive phenotype regulated by a single locus. This locus, HED1 (HR regulator in EDS1 pathway), is proposed to encode a protein whose activity can cause suppression of the EDS1-dependent HR signaling pathway. HED1-regulated symptomless gene-for-gene resistance responses may explain some cases of Arabidopsis resistance to bacteria that are classified as nonhost resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


2020 ◽  
Vol 21 (15) ◽  
pp. 5514
Author(s):  
Xiaoyu Wang ◽  
Lingyao Kong ◽  
Pengfei Zhi ◽  
Cheng Chang

The aerial surface of higher plants is covered by a hydrophobic layer of cuticular waxes to protect plant tissues against enormous environmental challenges including the infection of various pathogens. As the first contact site between plants and pathogens, the layer of cuticular waxes could function as a plant physical barrier that limits the entry of pathogens, acts as a reservoir of signals to trigger plant defense responses, and even gives cues exploited by pathogens to initiate their infection processes. Past decades have seen unprecedented proceedings in understanding the molecular mechanisms underlying the biosynthesis of plant cuticular waxes and their functions regulating plant–pathogen interactions. In this review, we summarized the recent progress in the molecular biology of cuticular wax biosynthesis and highlighted its multiple roles in plant disease resistance against bacterial, fungal, and insect pathogens.


2011 ◽  
Vol 101 (6) ◽  
pp. 741-749 ◽  
Author(s):  
Yi-Hsien Lin ◽  
Hsiang-En Huang ◽  
Yen-Ru Chen ◽  
Pei-Luan Liao ◽  
Ching-Lian Chen ◽  
...  

Protein phosphorylation is an important biological process associated with elicitor-induced defense responses in plants. In a previous report, we described how plant ferredoxin-like protein (PFLP) in transgenic plants enhances resistance to bacterial pathogens associated with the hypersensitive response (HR). PFLP possesses a putative casein kinase II phosphorylation (CK2P) site at the C-terminal in which phosphorylation occurs rapidly during defense response. However, the contribution of this site to the enhancement of disease resistance and the intensity of HR has not been clearly demonstrated. In this study, we generated two versions of truncated PFLP, PEC (extant CK2P site) and PDC (deleted CK2P site), and assessed their ability to trigger HR through harpin (HrpZ) derived from Pseudomonas syringae as well as their resistance to Ralstonia solanacearum. In an infiltration assay of HrpZ, PEC intensified harpin-mediated HR; however, PDC negated this effect. Transgenic plants expressing these versions indicate that nonphosphorylated PFLP loses its ability to induce HR or enhance disease resistance against R. solanacearum. Interestingly, the CK2P site of PFLP is required to induce the expression of the NADPH oxidase gene, AtrbohD, which is a reactive oxygen species producing enzyme. This was further confirmed by evaluating the HR on NADPH oxidase in mutants of Arabidopsis. As a result, we have concluded that the CK2P site is required for the phosphorylation of PFLP to enhance disease resistance.


Sign in / Sign up

Export Citation Format

Share Document