scholarly journals Physalin A, 13,14-Seco-16, 24-Cyclo-Steroid, Inhibits Stemness of Breast Cancer Cells by Regulation of Hedgehog Signaling Pathway and Yes-Associated Protein 1 (YAP1)

2021 ◽  
Vol 22 (16) ◽  
pp. 8718
Author(s):  
Yu-Chan Ko ◽  
Hack Sun Choi ◽  
Ren Liu ◽  
Dong-Sun Lee

The Hedgehog (HH) signaling pathway plays an important role in embryonic development and adult organ homeostasis. Aberrant activity of the Hedgehog signaling pathway induces many developmental disorders and cancers. Recent studies have investigated the relationship of this pathway with various cancers. GPCR-like protein Smoothened (SMO) and the glioma-associated oncogene (GLI1) are the main effectors of Hedgehog signaling. Physalin A, a bioactive substance derived from Physalis alkekengi, inhibits proliferation and migration of breast cancer cells and mammospheres formation. Physalin A-induced apoptosis and growth inhibition of mammospheres, and reduced transcripts of cancer stem cell (CSC) marker genes. Physalin A reduced protein expressions of SMO and GLI1/2. Down-regulation of SMO and GLI1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation by reducing GLI1 gene expression. Down-regulation of GLI1 reduced CSC marker genes. Physalin A reduced protein level of YAP1. Down-regulation of YAP1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation through reduction of YAP1 gene expression. Down-regulation of YAP1 reduced CSC marker genes. We showed that treatment of MDA-MB-231 breast cancer cells with GLI1 siRNA induced inhibition of mammosphere formation and down-regulation of YAP1, a Hippo pathway effector. These results show that Hippo signaling is regulated by the Hedgehog signaling pathway. Physalin A also inhibits the canonical Hedgehog and Hippo signaling pathways, CSC-specific genes, and the formation of mammospheres. These findings suggest that physalin A is a potential therapeutic agent for targeting CSCs.

2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


2018 ◽  
Vol 399 (11) ◽  
pp. 1305-1311 ◽  
Author(s):  
Guo-Qing Song ◽  
Yi Zhao

Abstract Down-regulation of the meningioma-associated protein (MAC30) gene has been found in many solid cancers. This study was carried out to determine the roles and the mechanisms of MAC30 in breast cancer. We used our own data and a public database to analyze the MAC30 mRNA and protein levels in breast cancer tissues. In addition, we established MAC30 knockdown breast cancer cells using MAC30 siRNA. The roles of MAC30 were detected by using the Soft agar assay, Annexin-V-FITC/PI double staining and the Transwell assay. Western blotting was used to analyze the potential mechanism(s) of MAC30 in these cells. We found that MAC30 mRNA and protein were higher in the cancer tissues compared to the matched normal tissues. MAC30 expression was associated with tumor size, tumor differentiation and estrogen receptor (ER) status. Overall survival rate of the patients with low MAC30 expression was obviously higher than the ones with high expression. The apoptotic ratio was lower in MDA-MB-231 and MDA-MB-157 cells with MAC30 expression. By Western blot analysis, we found that increased levels of phosphorylated YAP1, MST1 and LATS1 after MAC30 siRNA transfection in these two cells. In summary, we demonstrate that MAC30 knockdown is involved in the activation of the Hippo signaling pathway.


2021 ◽  
pp. 114081
Author(s):  
Min-Gu Lee ◽  
Yun-Suk Kwon ◽  
Kyung-Soo Nam ◽  
Seo Yeon Kim ◽  
In Hyun Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document