scholarly journals Natural Mutations Affect Structure and Function of gC1q Domain of Otolin-1

2021 ◽  
Vol 22 (16) ◽  
pp. 9085
Author(s):  
Rafał Hołubowicz ◽  
Andrzej Ożyhar ◽  
Piotr Dobryszycki

Otolin-1 is a scaffold protein of otoliths and otoconia, calcium carbonate biominerals from the inner ear. It contains a gC1q domain responsible for trimerization and binding of Ca2+. Knowledge of a structure–function relationship of gC1q domain of otolin-1 is crucial for understanding the biology of balance sensing. Here, we show how natural variants alter the structure of gC1q otolin-1 and how Ca2+ are able to revert some effects of the mutations. We discovered that natural substitutions: R339S, R342W and R402P negatively affect the stability of apo-gC1q otolin-1, and that Q426R has a stabilizing effect. In the presence of Ca2+, R342W and Q426R were stabilized at higher Ca2+ concentrations than the wild-type form, and R402P was completely insensitive to Ca2+. The mutations affected the self-association of gC1q otolin-1 by inducing detrimental aggregation (R342W) or disabling the trimerization (R402P) of the protein. Our results indicate that the natural variants of gC1q otolin-1 may have a potential to cause pathological changes in otoconia and otoconial membrane, which could affect sensing of balance and increase the probability of occurrence of benign paroxysmal positional vertigo (BPPV).

Biochemistry ◽  
2011 ◽  
Vol 50 (39) ◽  
pp. 8352-8361 ◽  
Author(s):  
Alessia Belgi ◽  
Mohammed A. Hossain ◽  
Fazel Shabanpoor ◽  
Linda Chan ◽  
Suode Zhang ◽  
...  

1998 ◽  
Vol 332 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Steven VAYRO ◽  
Bryan LO ◽  
Mel SILVERMAN

We have exploited two mutants of the rabbit intestinal Na+/glucose carrier SGLT1 to explore the structure/function relationship of this Na+/glucose transporter in COS-7 cells. A functional N-terminal myc-epitope-tagged SGLT1 protein was constructed and used to determine the plasma-membrane localization of SGLT1. The kinetic and specificity characteristics of the myc-tagged SGLT1 mutant were identical with those of wild-type SGLT1. Immunogold labelling and electron microscopy confirmed the topology of the N-terminal region to be extracellular. Expression of the SGLT1 A166C mutant in these cells showed diminished levels of Na+-dependent α-methyl-d-glucopyranoside transport activity compared with wild-type SGLT1. For SGLT1 A166C, Vmax was 0.92±0.08 nmol/min per mg of protein and Km was 0.98±0.13 mM; for wild-type SGLT1, Vmax was 1.98±0.47 nmol/min per mg of protein and Km was 0.36±0.16 mM. Significantly, phlorrhizin (phloridzin) binding experiments confirmed equal expression of Na+-dependent high-affinity phlorrhizin binding to COS-7 cells expressing SGLT1 A166C or wild-type SGLT1 (Bmax 1.55±0.18 and 1.69±0.57 pmol/mg of protein respectively); Kd values were 0.46±0.15 and 0.51±0.11 µM for SGLT1 A166C and wild-type SGLT1 respectively. The specificity of sugar interaction was unchanged by the A166C mutation. We conclude that the replacement of an alanine residue by cysteine at position 166 has a profound effect on transporter function, resulting in a decrease in transporter turnover rate by a factor of 2. Taken as a whole the functional changes observed by SGLT1 A166C are most consistent with the mutation having caused an altered Na+ interaction with the transporter.


2003 ◽  
Vol 185 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Michael Rother ◽  
Isabella Mathes ◽  
Friedrich Lottspeich ◽  
August Böck

ABSTRACT The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion. The wild-type form of M. maripaludis repressed the synthesis of the S forms of selenoproteins, i.e., the selenium-independent alternative system, in selenium-enriched medium, but the mutant did not. We concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoprotein. Apart from the S forms, several enzymes from the general methanogenic route were affected by selenium supplementation of the wild type or by the selB mutation. Although the growth of M. maripaludis on H2/CO2 is only marginally affected by the selB lesion, the gene is indispensable for growth on formate because M. maripaludis possesses only a selenocysteine-containing formate dehydrogenase.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1669-C1669
Author(s):  
Marie-Ève Picard ◽  
Julie Barma ◽  
Yiguang Zhu ◽  
Xavier Murphy Després ◽  
Jean-Baptiste Duvignaud ◽  
...  

Caerulomycin A (CRM A) is an immunosupressive agent that has a unique 2,2'-bipyridine core structure. Isolated from a marine-derived Actinoalloteichus cyanogriseus, this natural product exhibits antifungal, anti-amoebic, antitumor, and antimicrobial activities. Its biosynthetic pathway consists of more than 20 enzymes, at least seven of which are putatively involved in post-PKS/NRPS modifications of the scaffold. Among these, CrmK is a flavin-dependent oxidase. We have determined the crystal structure of CrmK bound to its flavin adenin dinucleotide (FAD) cofactor at 1.9 Å resolution. FAD linkage to CrmK is observed via two covalent bonds with protein residues His64 and Cys124. This crystal structure, combined with the activity analysis of both wild-type CrmK and a series of mutants, has revealed the role of active site residues lining the substrate and FAD binding pocket. Our studies add additional molecular insights into the structure and function relationship of the bicovalently flavinylated oxidases.


2020 ◽  
Author(s):  
Xiaoqing Huang ◽  
Daniel Kim ◽  
Peishan Huang ◽  
Ashley Vater ◽  
Justin B. Siegel

ABSTRACTComputational protein design is growing in popularity as a means to engineer enzymes. Currently, protein design algorithms can predict the stability and function of the enzymes to only a limited degree. Thus, further experimental data is required for training software to more accurately characterize the structure-function relationship of enzymes. To date, the Design2Data (D2D) database holds 129 single point mutations of β-glucosidase B (BglB) characterized by kinetic and thermal stability biophysical parameters. In this study, we introduced six mutants into the BglB database and examined their catalytic activity and thermal stability: L171M, H178M, M221L, E406W, N160E, and F415M.


2020 ◽  
Vol 129 (5) ◽  
pp. 1024-1032
Author(s):  
Hannah J. Thomas ◽  
Usaid Rana ◽  
Channa E. Marsh ◽  
Harrison T. Caddy ◽  
Lachlan J. Kelsey ◽  
...  

There is acknowledged variability in the Circle of Willis in the general population, yet the structure and function relationship of the cerebrovasculature is poorly understood. Using a combination of magnetic resonance imaging, high-resolution Doppler ultrasound, and computational fluid dynamic modeling, we show that monozygotic twins exhibit differences in cerebrovascular structure and function when exposed to physiological stimuli. These data suggest that the morphology, function, and health of cerebrovascular arteries are not primarily genetically determined.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav6326 ◽  
Author(s):  
Alexander Erlich ◽  
Philip Pearce ◽  
Romina Plitman Mayo ◽  
Oliver E. Jensen ◽  
Igor L. Chernyavsky

Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics, we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusion-limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.


Sign in / Sign up

Export Citation Format

Share Document