scholarly journals Dietary Isothiocyanates, Sulforaphane and 2-Phenethyl Isothiocyanate, Effectively Impair Vibrio cholerae Virulence

2021 ◽  
Vol 22 (19) ◽  
pp. 10187
Author(s):  
Klaudyna Krause ◽  
Agnieszka Pyrczak-Felczykowska ◽  
Monika Karczewska ◽  
Magdalena Narajczyk ◽  
Anna Herman-Antosiewicz ◽  
...  

Vibrio cholerae represents a constant threat to public health, causing widespread infections, especially in developing countries with a significant number of fatalities and serious complications every year. The standard treatment by oral rehydration does not eliminate the source of infection, while increasing antibiotic resistance among pathogenic V. cholerae strains makes the therapy difficult. Thus, we assessed the antibacterial potential of plant-derived phytoncides, isothiocyanates (ITC), against V. cholerae O365 strain. Sulforaphane (SFN) and 2-phenethyl isothiocyanate (PEITC) ability to inhibit bacterial growth was assessed. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that these compounds possess antibacterial activity and are also effective against cells growing in a biofilm. Tested ITC caused accumulation of stringent response alarmone, ppGpp, which indicates induction of the global stress response. It was accompanied by bacterial cytoplasm shrinkage, the inhibition of the DNA, and RNA synthesis as well as downregulation of the expression of virulence factors. Most importantly, ITC reduced the toxicity of V. cholerae in the in vitro assays (against Vero and HeLa cells) and in vivo, using Galleria mellonella larvae as an infection model. In conclusion, our data indicate that ITCs might be considered promising antibacterial agents in V. cholerae infections.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2020 ◽  
Vol 78 (8) ◽  
Author(s):  
Thaís Aguiar Santos ◽  
Liliana Scorzoni ◽  
Raquel Correia ◽  
Juliana Campos Junqueira ◽  
Ana Lia Anbinder

ABSTRACT Periodontitis is a multifactorial inflammatory disease, and the major cause of tooth loss in adults. New therapies have been proposed for its treatment, including the use of probiotics such as Lactobacillus reuteri. The objective of this study was to evaluate the antimicrobial effects of L. reuteri: live, heat-killed and culture filtrate (cell-free supernatant), on periodontopathogenic bacteria (Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans) in vitro, as well as the in vivo survival curve, hemocyte density and microbial recovery using Galleria mellonella. For in vitro assays, all preparations reduced colony forming units of F. nucleatum, while only live L. reuteri reduced the growth of A. actinomycetemcomitans. All treatments reduced periodontopathogenic bacteria growth in vivo. The treatment with the supernatant increased the survival of larvae infected with F. nucleatum more than the treatment with live L. reuteri, and none of the treatments altered the survival of A. actinomycetemcomitans-infected larvae. In addition, the treatment with L. reuteri preparations did not alter the hemocyte count of F. nucleatum- and A. actinomycetemcomitans-infected larvae. This study demonstrated that L. reuteri preparations exerted antimicrobial effects and increased the survival of G. mellonella infected by F. nucleatum, although only live L. reuteri was able to reduce the growth of A. actinomycetemcomitans in vitro.


2021 ◽  
Vol 11 ◽  
Author(s):  
Janet Y. Nale ◽  
Gurinder K. Vinner ◽  
Viviana C. Lopez ◽  
Anisha M. Thanki ◽  
Preeda Phothaworn ◽  
...  

Salmonella spp. is a leading cause of gastrointestinal enteritis in humans where it is largely contracted via contaminated poultry and pork. Phages can be used to control Salmonella infection in the animals, which could break the cycle of infection before the products are accessible for consumption. Here, the potential of 21 myoviruses and a siphovirus to eliminate Salmonella in vitro and in vivo was examined with the aim of developing a biocontrol strategy to curtail the infection in poultry and swine. Together, the phages targeted the twenty-three poultry and ten swine prevalent Salmonella serotype isolates tested. Although individual phages significantly reduced bacterial growth of representative isolates within 6 h post-infection, bacterial regrowth occurred 1 h later, indicating proliferation of resistant strains. To curtail bacteriophage resistance, a novel three-phage cocktail was developed in vitro, and further investigated in an optimized Galleria mellonella larva Salmonella infection model colonized with representative swine, chicken and laboratory strains. For all the strains examined, G. mellonella larvae given phages 2 h prior to bacterial exposure (prophylactic regimen) survived and Salmonella was undetectable 24 h post-phage treatment and throughout the experimental time (72 h). Administering phages with bacteria (co-infection), or 2 h post-bacterial exposure (remedial regimen) also improved survival (73–100% and 15–88%, respectively), but was less effective than prophylaxis application. These pre-livestock data support the future application of this cocktail for further development to effectively treat Salmonella infection in poultry and pigs. Future work will focus on cocktail formulation to ensure stability and incorporation into feeds and used to treat the infection in target animals.


2016 ◽  
Author(s):  
Joanna Zmurko ◽  
Rafael E Marques ◽  
Dominique Schols ◽  
Erik Verbeken ◽  
Suzanne J.F. Kaptein ◽  
...  

Zika virus (ZIKV) is an emerging flavivirus typically causing a dengue-like febrile illness, but neurological complications, such as microcephaly in newborns, have potentially been linked to this viral infection. We established a panel of in vitro assays to allow the identification of ZIKV inhibitors and demonstrate that the viral polymerase inhibitor 7-deaza-2'-C-methyladenosine (7DMA) efficiently inhibits replication. Infection of AG129 (IFN-α/β and IFN-γ receptor knock-21 out) mice with ZIKV resulted in acute neutrophilic encephalitis with viral antigens accumulating in neurons of the brain and spinal cord. Additionally, high levels of viral RNA were detected in the spleen, liver and kidney, and levels of IFN-γ and IL-18 were systematically increased in serum of ZIKV-infected mice. Interestingly, the virus was also detected in testicles of infected mice. In line with its in vitro anti-ZIKV activity, 7DMA reduced viremia and delayed virus-induced morbidity and mortality in infected mice, which also validates this small animal model to assess the in vivo efficacy of novel ZIKV inhibitors. Since AG129 mice can generate an antibody response, and have been used in dengue vaccine studies, the model can also be used to assess the efficacy of ZIKV vaccines.


2020 ◽  
Vol 15 (4) ◽  
pp. 241-257
Author(s):  
Samuel J Willcocks ◽  
Carmen Denman ◽  
Felipe Cia ◽  
Elizabeth McCarthy ◽  
Jon Cuccui ◽  
...  

Aim: We sought to characterize the contribution of the O-OTase, PglL, to virulence in two Burkholderia spp. by comparing isogenic mutants in Burkholderia pseudomallei with the related species, Burkholderia thailandensis. Materials & methods: We utilized an array of in vitro assays in addition to Galleria mellonella and murine in vivo models to assess virulence of the mutant and wild-type strains in each Burkholderia species. Results: We found that pglL contributes to biofilm and twitching motility in both species. PglL uniquely affected morphology; cell invasion; intracellular motility; plaque formation and intergenus competition in B. pseudomallei. This mutant was attenuated in the murine model, and extended survival in a vaccine-challenge experiment. Conclusion: Our data support a broad role for pglL in bacterial fitness and virulence, particularly in B. pseudomallei.


Author(s):  
Manuela Tietgen ◽  
Laura Leukert ◽  
Julian Sommer ◽  
Jan S Kramer ◽  
Steffen Brunst ◽  
...  

Abstract Objectives This study analysed the novel carbapenem-hydrolysing class D β-lactamase OXA-822 identified in the clinical Acinetobacter calcoaceticus isolate AC_2117. Methods WGS was employed for identification of β-lactamases. Micro-broth dilution was used for evaluation of antibiotic susceptibility of AC_2117 and transformants containing blaOXA-822. After heterologous purification of OXA-822, OXA-359 and OXA-213, enzyme kinetics were determined using spectrometry. The effect of OXA-822 upon meropenem treatment was analysed in the Galleria mellonella in vivo infection model. Results OXA-822 is a member of the intrinsic OXA-213-like family found in A. calcoaceticus and Acinetobacter pittii. Amino acid sequence similarity to the nearest related OXA-359 was 97%. Production of OXA-822, OXA-359 and OXA-213 in Acinetobacter baumannii ATCC® 19606T resulted in elevated MICs for carbapenems (up to 16-fold). Penicillinase activity of the purified OXA-822 revealed high KM values, in the millimolar range, combined with high turnover numbers. OXA-822 showed the highest affinity to carbapenems, but affinity to imipenem was ∼10-fold lower compared with other carbapenems. Molecular modelling revealed that imipenem does not interact with a negatively charged side chain of OXA-822, as doripenem does, leading to the lower affinity. Presence of OXA-822 decreased survival of infected Galleria mellonella larvae after treatment with meropenem. Only 52.7% ± 7.7% of the larvae survived after 24 h compared with 90.9% ± 3.7% survival in the control group. Conclusions The novel OXA-822 from a clinical A. calcoaceticus isolate displayed penicillinase and carbapenemase activity in vitro, elevated MICs in different species and decreased carbapenem susceptibility in A. baumannii in vivo.


2014 ◽  
Vol 63 (7) ◽  
pp. 945-955 ◽  
Author(s):  
Jessica Krezdorn ◽  
Sophie Adams ◽  
Peter J. Coote

The aim of this study was to compare the inhibitory effect of antibiotic combinations in vitro with efficacy in Galleria mellonella larvae in vivo to identify efficacious combinations that target Pseudomonas aeruginosa. P. aeruginosa NCTC 13437, a multidrug-resistant strain resistant to β-lactams and aminoglycosides, was used. Susceptibility to cefotaxime, piperacillin, meropenem, amikacin, levofloxacin and colistin alone, or in dual or triple combinations, was measured in vitro via a 24 h time-kill assay. In vitro results were then compared with the efficacy of the same dual or triple antibiotic combinations versus G. mellonella larvae infected with P. aeruginosa. G. mellonella haemolymph burden of P. aeruginosa was determined over 96 h post-infection and treatment with the most potent combination therapies. Many dual and triple combinations of antibiotics displayed synergistic inhibition of multidrug-resistant P. aeruginosa in vitro. There was little correlation between combinations that were synergistic in vitro and those that showed enhanced efficacy in vivo versus infected G. mellonella larvae. The most potent dual and triple combinations in vivo were cefotaxime plus piperacillin, and meropenem plus piperacillin and amikacin, respectively. Fewer combinations were found to offer enhanced therapeutic benefit in vivo compared with in vitro. The therapeutic benefit arising from treatment with antibiotic combinations in vivo correlated with reduced larval burden of P. aeruginosa. This study has identified antibiotic combinations that merit further investigation for their clinical potential and has demonstrated the utility of using G. mellonella to screen for novel antibiotic treatments that demonstrate efficacy in vivo.


2019 ◽  
Author(s):  
Caifen Qi ◽  
Shuangli Xu ◽  
Maomao Wu ◽  
Shuo Zhu ◽  
Yanyan Liu ◽  
...  

AbstractObjectiveTo explore the in vitro and in vivo antibacterial activity of linezolid/fosfomycin combination against vancomycin-susceptible and -resistant enterococci (VSE and VRE), providing theoretical basis for the treatment of VRE.MethodsThe checkerboard method and time-kill curve study were used to evaluate the synergistic effect of linezolid combined with fosfomycin against VSE and VRE. The transmission electron microscopy (TEM) was employed to observe the bacterial cell morphology followed by each drug alone and in combination, elucidating the possible result of antibiotic combination therapy. The Galleria mellonella infection model was constructed to demonstrate the in vivo efficacy of linezolid plus fosfomycin for VSE and VRE infection.ResultsThe fractional inhibitory concentration index (FICI) values of all strains suggested that linezolid showed synergy or additivity in combination with fosfomycin against five of the six strains. Time-kill experiments demonstrated that the combination of linezolid-fosfomycin at 1×MIC or 2×MIC led to higher degree of bacterial killing without regrowth for all isolates tested than each monotherapy. TEM imaging showed that the combination treatment damaged the bacterial cell morphology more obviously than each drug alone. In the Galleria mellonella infection model, the enhanced survival rate of the combination treatment was revealed compared to linezolid monotherapy (P<0.05).ConclusionsOur data manifest that the combination of linezolid and fosfomycin may be a possible therapeutic regimen for VRE infection. The combination displays excellent bacterial killing and inhibits amplification of fosfomycin-resistant subpopulations.


Sign in / Sign up

Export Citation Format

Share Document