scholarly journals State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites

2021 ◽  
Vol 22 (19) ◽  
pp. 10511
Author(s):  
Ana M. Díez-Pascual

The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 949
Author(s):  
Jiali Yu ◽  
Cheng-Hao Lee ◽  
Chi-Wai Kan

In contrast to traditional pigment colors, structural colors have developed a great potential in practical applications, thanks to their unique nonfading and color tunable properties; especially amorphous photonic structures with noniridescent structural colors have attracted considerable attention and their applications have expanded to more fields. Herein, graphene oxide (GO) and reduced graphene oxide (RGO) enhanced noniridescent structural colors with excellent mechanical robustness were established by a time-saving approach named spray coating, which allows for rapid fabrication of angular independent structural colors by spraying different photonic spray paints (PSPs) to ensure color multiplicity that was adjusted by the silica nanoparticles (SiO2 NPs) sizes onto the substrates. The incorporation of poly(methyl methacrylate-butyl acrylate) (PMB) improved the adhesion existing among SiO2 inter-nanoparticles and between SiO2 NPs and the substrates, taking advantages of the low glass transition temperature (Tg) of butyl acrylate derivative polymer and made PMB embedded PSPs coated patterns being imparted with good mechanical robustness and abrasive resistance. The peculiar light adsorption of GO and RGO across visible light spectrum facilitate higher color saturation. The improvement in color saturation of GO and RGO doped PSPs is expected to boost the promising applications in structurally colored paintings, inks and other color-related optical fields.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2105
Author(s):  
Ana M. Díez-Pascual ◽  
José A. Luceño-Sánchez

The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.


2019 ◽  
Vol 163 ◽  
pp. 77-85 ◽  
Author(s):  
Faisal Nazeer ◽  
Zhuang Ma ◽  
Lihong Gao ◽  
Fuchi Wang ◽  
Muhammad Abubaker Khan ◽  
...  

2018 ◽  
Vol 136 (10) ◽  
pp. 47164 ◽  
Author(s):  
Xin Zhang ◽  
Yahui Ma ◽  
Yingjin Pei ◽  
Shuojin Zheng ◽  
Qinghong Fang ◽  
...  

2021 ◽  
pp. 1-4
Author(s):  
Solomon L Joseph ◽  
◽  
Agumba O John ◽  
Fanuel M Keheze ◽  
◽  
...  

Carbon nanomaterials have recently attracted wide scientific applications due to their tunable properties. These novel materials act as best fillers that can provide substantial benefits due to their high strength, thermal conductivity, and electrical conductivities. With their huge applications as bulk materials, when implemented in polymer matrix as fillers, they give rise to new promising materials with which their properties can be tuned to suit a particular application. Besides the development of these new nanocomposite materials, there exist some challenges which must be fully surpassed to explore the potentiality of application of carbon-based nanocomposites. Reduced graphene oxide is one of the carbon derivatives which has attracted the current advancement in technology, and recently, it found its new applications in super capacitors used in electronic industries. The limiting factor for its exploration is the affordability. New and affordable sources of these graphene-based nanomaterial have to be devised, for fully realization of their potential applications. In this study, reduced graphene oxide and the bio-polymer chitosan were extracted from the locally available bio waste materials. Nanocomposites were prepared at 50% rGO: chitosan ratio. The films were then prepared by spin coating method. Prepared films were subjected to morphological analysis. From the results, it was observed that rGO induced chitosan crystallization, which led to formation of dendritic structures. Cellulose nanocrystals have thus displayed temperature dependent positive uniaxial birefringence


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 607 ◽  
Author(s):  
Fei Yu ◽  
Xueting Bai ◽  
Changfu Yang ◽  
Lijie Xu ◽  
Jie Ma

Reduced graphene oxide–titanium dioxide photocatalyst (rGO–TiO2) was successfully synthesized by the hydrothermal method. The rGO–TiO2 was used as photocatalyst for the degradation of bisphenol A (BPA), which is a typical endocrine disruptor of the environment. Characterization of photocatalysts and photocatalytic experiments under different conditions were performed for studying the structure and properties of photocatalysts. The characterization results showed that part of the anatase type TiO2 was converted into rutile type TiO2 after hydrothermal treatment and 1% rGO–P25 had the largest specific surface area (52.174 m2/g). Photocatalytic experiments indicated that 1% rGO–P25 had the best catalytic effect, and the most suitable concentration was 0.5 g/L. When the solution pH was 5.98, the catalyst was the most active. Under visible light, the three photocatalytic mechanisms were ranked as follows: O2•− > •OH > h+. 1% rGO–P25 also had strong photocatalytic activity in the photocatalytic degradation of BPA under sunlight irradiation. 1% rGO–P25 with 0.5 g/L may be a very promising photocatalyst with a variety of light sources, especially under sunlight for practical applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (74) ◽  
pp. 60596-60607 ◽  
Author(s):  
Lulu Pan ◽  
Jianfeng Ban ◽  
Shaorong Lu ◽  
Guoxin Chen ◽  
Jin Yang ◽  
...  

A novel reduced graphene oxide/perylene bisimide-containing hyperbranched polyglycerol was successfully prepared via π–π stacking interactions. The thermal and mechanical properties of the epoxy composite were enhanced significantly.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1013-1016 ◽  
Author(s):  
Chang Yi Kong ◽  
Yuuki Shiratori ◽  
Takeshi Sako ◽  
Futoshi Iwata

A green method to synthesize the reduced graphene oxide using supercritical fluid has been developed, which is an environmentally friendly and efficient route. The reduced graphene oxide has been examined by X-ray diffraction, Raman spectroscopy. We have also studied the effects of reduction temperatures and supercritical fluids on the electrical properties of reduced graphene oxide. It was found that ethanol has higher reducing capability than CO2at all temperatures (200 - 400°C) examined in this study for graphene oxide reduction. As a result, reduced graphene oxide (6300 S/m) from supercritical ethanol treatment has 5 times as high conductivity as that from supercritical CO2treatment at the reduction temperature of 400°C. This green process is applicable for large scale production of reduced graphene oxides for various practical applications.


Sign in / Sign up

Export Citation Format

Share Document