scholarly journals Snapin Specifically Up-Regulates Cav1.3 Ca2+ Channel Variant with a Long Carboxyl Terminus

2021 ◽  
Vol 22 (20) ◽  
pp. 11268
Author(s):  
Sua Jeong ◽  
Jeong-Seop Rhee ◽  
Jung-Ha Lee

Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavβ3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.

2005 ◽  
Vol 126 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Frank T. Horrigan ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state.


2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 292 (3) ◽  
pp. C1078-C1086 ◽  
Author(s):  
Haiyan Chen ◽  
Erika S. Piedras-Rentería

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease of the cerebellum and inferior olives characterized by a late-onset cerebellar ataxia and selective loss of Purkinje neurons ( 15 , 16 ). SCA6 arises from an expansion of the polyglutamine tract located in exon 47 of the α1A (P/Q-type calcium channel) gene from a nonpathogenic size of 4 to 18 glutamines (CAG4–18) to CAG19–33 in SCA6. The molecular basis of SCA6 is poorly understood. To date, the biophysical properties studied in heterologous systems support both a gain and a loss of channel function in SCA6. We studied the behavior of the human α1A isoform, previously found to elicit a gain of function in disease ( 41 ), focusing on properties in which the COOH terminus of the channel is critical for function: we analyzed the current properties in the presence of β4- and β2a-subunits (both known to interact with the α1A COOH terminus), current kinetics of activation and inactivation, calcium-dependent inactivation and facilitation, voltage-dependent inactivation, frequency dependence, and steady-state activation and inactivation properties. We found that SCA6 channels have decreased activity-dependent inactivation and a depolarizing shift (+6 mV) in steady-state inactivation properties consistent with a gain of function.


2006 ◽  
Vol 34 (5) ◽  
pp. 887-893 ◽  
Author(s):  
F. Van Petegem ◽  
D.L. Minor

Voltage-gated calcium channels (CaVs) are large (∼0.5 MDa), multisubunit, macromolecular machines that control calcium entry into cells in response to membrane potential changes. These molecular switches play pivotal roles in cardiac action potentials, neurotransmitter release, muscle contraction, calcium-dependent gene transcription and synaptic transmission. CaVs possess self-regulatory mechanisms that permit them to change their behaviour in response to activity, including voltage-dependent inactivation, calcium-dependent inactivation and calcium-dependent facilitation. These processes arise from the concerted action of different channel domains with CaV β-subunits and the soluble calcium sensor calmodulin. Until recently, nothing was known about the CaV structure at high resolution. Recent crystallographic work has revealed the first glimpses at the CaV molecular framework and set a new direction towards a detailed mechanistic understanding of CaV function.


2003 ◽  
Vol 284 (1) ◽  
pp. H256-H267 ◽  
Author(s):  
Jixin Wang ◽  
Kimberly Della Penna ◽  
Hao Wang ◽  
Jerzy Karczewski ◽  
Thomas M. Connolly ◽  
...  

We established HEK-293 cell lines that stably express functional canine ether-à-go-go-related gene (cERG) K+ channels and examined their biophysical and pharmacological properties with whole cell patch clamp and35S-labeled MK-499 ([35S]MK-499) binding displacement. Functionally, cERG current had the hallmarks of cardiac delayed rectifier K+ current ( I Kr). Channel opening was time- and voltage dependent with threshold near −40 mV. The half-maximum activation voltage was −7.8 ± 2.4 mV at 23°C, shifting to −31.9 ± 1.2 mV at 36°C. Channels activated with a time constant of 13 ± 1 ms at +20 mV, showed prominent inward rectification at depolarized potentials, were highly K+ selective (Na+-to-K+permeability ratio = 0.007), and were potently inhibited by I Kr blockers. Astemizole, terfenadine, cisapride, and MK-499 inhibited cERG and human ERG (hERG) currents with IC50 values of 1.3, 13, 19, and 15 nM and 1.2, 9, 14, and 21 nM, respectively, and competitively displaced [35S]MK-499 binding from cERG and hERG with IC50 values of 0.4, 12, 35, and 0.6 nM and 0.8, 5, 47, and 0.7 nM, respectively. cERG channels had biophysical properties appropriate for canine action potential repolarization and were pharmacologically sensitive to agents known to prolong QT. A novel MK-499 binding assay provides a new tool to detect agents affecting ERG channels.


2009 ◽  
Vol 133 (3) ◽  
pp. 327-343 ◽  
Author(s):  
Felix Findeisen ◽  
Daniel L. Minor

Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker.


2006 ◽  
Vol 128 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Jeff E. Angermann ◽  
Amy R. Sanguinetti ◽  
James L. Kenyon ◽  
Normand Leblanc ◽  
Iain A. Greenwood

The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to ∼20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, IClCa was ∼100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl− channel complex influences current generation dramatically through one or more critical voltage-dependent steps.


1997 ◽  
Vol 109 (4) ◽  
pp. 449-461 ◽  
Author(s):  
Gonzalo Ferreira ◽  
Jianxun Yi ◽  
Eduardo Ríos ◽  
Roman Shirokov

It is widely believed that Ba2+ currents carried through L-type Ca2+ channels inactivate by a voltage- dependent mechanism similar to that described for other voltage-dependent channels. Studying ionic and gating currents of rabbit cardiac Ca2+ channels expressed in different subunit combinations in tsA201 cells, we found a phase of Ba2+ current decay with characteristics of ion-dependent inactivation. Upon a long duration (20 s) depolarizing pulse, IBa decayed as the sum of two exponentials. The slow phase (τ ≈ 6 s, 21°C) was parallel to a reduction of gating charge mobile at positive voltages, which was determined in the same cells. The fast phase of current decay (τ ≈ 600 ms), involving about 50% of total decay, was not accompanied by decrease of gating currents. Its amplitude depended on voltage with a characteristic U-shape, reflecting reduction of inactivation at positive voltages. When Na+ was used as the charge carrier, decay of ionic current followed a single exponential, of rate similar to that of the slow decay of Ba2+ current. The reduction of Ba2+ current during a depolarizing pulse was not due to changes in the concentration gradients driving ion movement, because Ba2+ entry during the pulse did not change the reversal potential for Ba2+. A simple model of Ca2+-dependent inactivation (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1993. J. Gen. Physiol. 102:1005–1030) robustly accounts for fast Ba2+ current decay assuming the affinity of the inactivation site on the α1 subunit to be 100 times lower for Ba2+ than Ca2+.


Sign in / Sign up

Export Citation Format

Share Document