scholarly journals Regulation of Limbal Epithelial Stem Cells: Importance of the Niche

2021 ◽  
Vol 22 (21) ◽  
pp. 11975
Author(s):  
Sarah Y. T. Robertson ◽  
JoAnn S. Roberts ◽  
Sophie X. Deng

Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Wagstaff ◽  
Anneloor L. M. A. ten Asbroek ◽  
Jacoline B. ten Brink ◽  
Nomdo M. Jansonius ◽  
Arthur A. B. Bergen

AbstractGenetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1398
Author(s):  
Shih-Yi Hsu ◽  
Robert Morris ◽  
Feng Cheng

Silica nanoparticles are a class of molecules commonly used in drug or gene delivery systems that either facilitate the delivery of therapeutics to specific drug targets or enable the efficient delivery of constructed gene products into biological systems. Some in vivo or in vitro studies have demonstrated the toxic effects of silica nanoparticles. Despite the availability of risk management tools in response to the growing use of synthetic silica in commercial products, the molecular mechanism of toxicity induced by silica nanoparticles is not well characterized. The purpose of this study was to elucidate the effects of silica nanoparticle exposure in three types of cells including human aortic endothelial cells, mouse-derived macrophages, and A549 non-small cell lung cancer cells using toxicogenomic analysis. The results indicated that among all three cell types, the TNF and MAPK signaling pathways were the common pathways upregulated by silica nanoparticles. These findings may provide insight into the effects of silica nanoparticle exposure in the human body and the possible mechanism of toxicity.


Blood ◽  
1993 ◽  
Vol 81 (9) ◽  
pp. 2310-2320 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Lymphomyeloid stem cells from the bone marrow of C57BL/6 mice treated with 5-fluorouracil (5-FU) were characterized with respect to 12 parameters using fluorescence-activated cell sorting and a competitive long-term repopulation assay. Stem cells were larger than lymphocytes and exhibited side light-scatter characteristic of blast cells. Most expressed low levels of Thy-1.2, high levels of Sca-1 (Ly6-A/E), H-2Kb, and AA4.1 antigens and stained brightly with rhodamine-123. Significantly, most long-term repopulating cells also expressed CD4, some at high density. In addition, a significant proportion displayed low to medium levels of the “lineage-specific” markers CD45R (B220), Gr- 1, and TER-119. A simple and rapid multiparameter sorting procedure enriched the stem cells 100-fold and substantially removed most other clonogenic cell types, including day 12 spleen colony-forming cells. Cells able to generate cobblestone colonies on stromal cells in vitro were co-enriched. Lethally irradiated mice transplanted with limiting numbers of the sorted stem cells did not survive unless cotransplanted with “compromised” marrow cells prepared by prior serial transplantation and shown to be depleted of long-term repopulating activity. A significant number of recipients transplanted with 25 to 100 sorted cells contained donor-derived B and T lymphocytes and granulocytes in their peripheral blood for at least 6 months. Limiting dilution analysis in vivo indicated that the frequency of competitive long-term repopulating units (CRU) in the sorted population was at least 1 in 60 cells. The calculated frequency of CRU was largely independent of the time of recipient analysis between 10 and 52 weeks, indicating that highly enriched stem cells can be recruited relatively early in certain transplant settings. This simple enrichment and assay strategy for repopulating hematopoietic stem cells should facilitate further analysis of their regulation in vivo.


2021 ◽  
Author(s):  
Elizabeth Ransey ◽  
Kirill Chesnov ◽  
Elias Wisdom ◽  
Ryan Bowman ◽  
Tatiana Rodriguez ◽  
...  

The coordination of activity between brain cells is a key determinant of neural circuit function; nevertheless, approaches that selectively regulate communication between two distinct cellular components of a circuit, while leaving the activity of the presynaptic brain cell undisturbed remain sparce. To address this gap, we developed a novel class of electrical synapses by selectively engineering two connexin proteins found in Morone americana (white perch fish): connexin34.7 (Cx34.7) and connexin35 (Cx35). By iteratively exploiting protein mutagenesis, a novel in vitro assay of connexin docking, and computational modeling of connexin hemichannel interactions, we uncovered the pattern of structural motifs that broadly determine connexin hemichannel docking. We then utilized this knowledge to design Cx34.7 and Cx35 hemichannels that dock with each other, but not with themselves nor other major connexins expressed in the human central nervous system. We validated these hemichannels in vivo, demonstrating that they facilitate communication between two neurons in Caenorhabditis elegans and recode a learned behavioral preference. This system can be applied to edit circuits composed by pairs of genetically defined brain cell types across multiple species. Thus, we establish a potentially translational approach, Long-term integration of Circuits using connexins (LinCx), for context-precise circuit-editing with unprecedented spatiotemporal specificity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1885-1885
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Nicholas J. Goulden ◽  
Allison Blair

Abstract The cell of origin of childhood acute lymphoblastic leukaemia (ALL) has been the subject of conflicting reports in recent years. One model suggests that many haemopoietic cell types are susceptible to transformation and the level of commitment of the target cell influences the characteristics of the resulting blast cell population. A second model suggests that primitive haemopoietic cells are the targets for transformation, with some differentiation occurring subsequent to the transformation event. This model suggests a hierarchy of progenitors may exist in ALL. In support of this latter model, we have demonstrated that leukaemic stem cells in B-ALL have a primitive CD34+/CD10−/CD19− phenotype and T-ALL cells with NOD/SCID engrafting capacity are CD34+/CD4−. In this investigation we have attempted to further purify and characterise leukaemic stem cells from children with T-ALL. Cells from 7 patients were sorted for expression of CD34 and CD7 and the sorted subfractions evaluated for long-term proliferative ability in vitro using a serum free suspension culture assay and in the NOD/SCID mouse model. In this group of patients, the CD34+/CD7+ fraction represented 7±6% of cells at sorting, 6±4% were CD34+/CD7− and the majority were CD34−/CD7+ (60±12%). After 3 weeks in culture, the majority of proliferating cells were derived from the CD34+/CD7− subfraction (53±16%). By week 6, >70% of proliferating cells were derived from the CD34+/CD7− subfraction. Unsorted ALL cells and the sorted subfractions from 4 of these patients, were evaluated for their ability to engraft sublethally irradiated NOD/SCID mice. In each case, engraftment was achieved using 105–106 unsorted cells (25–80% CD45+) and with the CD34+/CD7− subfraction only (4–84% CD45+ with 3x103–8x104 cells). There was no engraftment with the other subfractions despite injecting up to 100 fold more cells. The engrafted cells had the same karyotype as the patient at diagnosis and expressed high levels of CD2, CD4 and CD7 implying they had differentiated in vivo. The self-renewal capacity of the CD34+/CD7− cells was evaluated by secondary transplantation. CD45+ cells from NOD/SCIDs engrafted with CD34+/CD7− cells successfully engrafted secondary recipients with equivalent levels of human cell engraftment, demonstrating these cells were capable of self-renewal. These findings suggest that cells with a more primitive phenotype may be the targets for transformation in T-ALL, rather than committed lymphocytes. To further investigate this hypothesis, we sorted cells from 4 of these patients for expression of CD133 and CD7 and evaluated their proliferative ability as described above. Results to date indicate that the CD133+/CD7− fraction represents only 0.35% of nucleated cells at sorting. However, after 3 weeks in culture, 48±9% of proliferating cells were derived from this subfraction and by week 6, 58±20% of cells were derived from the CD133+/CD7− subfraction. In vivo analyses completed in 2 patients to date have shown that only the CD133+/CD7− subfraction was capable of engrafting NOD/SCID mice (0.5–54% CD45+ using 3x103–105 cells). These results demonstrate that T-ALL cells with long-term proliferative and NOD/SCID repopulating capacity express the primitive haemopoietic cell antigens CD133 and CD34 and lack expression of T-lineage markers. These findings add further support to the concept of a common cell of origin for acute leukaemias.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 10025-10025
Author(s):  
Xiaolin Wan ◽  
Choh L Yeung ◽  
Christine Heske ◽  
Arnulfo Mendoza ◽  
Lee J. Helman

10025 Background: Dysregulation of IGF signaling plays a fundamental role in oncogenesis in pediatric sarcomas. We recently completed a Phase II study targeting the IGFI receptor signaling pathway in refractory Ewing’s and other sarcomas. We demonstrated an objective response rate of 16 percent, but most responses were transient lasting less than 18 weeks. The majority of patients, even those with initial responses, do not have long term benefit from IGFIR blockade, indicating the presence of an innately resistant tumor mass or the recruitment of compensatory pathways allowing for continued growth. To improve on these responses, we have been probing these tumors to identify other critical pathways that might allow combined targeting approaches. Methods: Multiple RMS and ES cell lines were treated with IGF1R kinase inhibitors and assayed for up-regulation of various signaling pathways. Combination treatment with IGF1R inhibitors and inhibitors of additional signaling pathways were then tested in vitro and in vivo using standard techniques. For in vivo xenograft studies, treatments began 11 days following orthotopic injection of tumor cells. Results: We have identified repid up-regulation of Src family kinase (SFK) signaling within 4 hours of IGF1R blockade in both RMS and ES cell lines. Of note, combined treatment with IGF1R Ab plus IGF1R kinase inhibitors most potently upregulated SFK signaling. Based on these findings, we tested combined IGF1R blockade with SFK inhibition using the commercially available drug, dasatinib. We show that dual blockade of IGF1R and SFK pathways were synergistic in vitro. Furthermore, in xenograft models of RMS, the combination IGF1R and SFK inhibition led to long-term disease free status for at least 90 days in some mice, never seen in our hands previously using these models. Conclusions: This work identified that IGF-1R inhibition induced activation of Src kinase that may act as a by-pass pathway. Synergistic activity of IGF-1R and SFK kinase inhibitors was observed in vitro and in vivo. Dual IGFI and SFK kinase inhibition may lead to improved therapeutic outcomes.


Blood ◽  
1993 ◽  
Vol 81 (9) ◽  
pp. 2310-2320 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Lymphomyeloid stem cells from the bone marrow of C57BL/6 mice treated with 5-fluorouracil (5-FU) were characterized with respect to 12 parameters using fluorescence-activated cell sorting and a competitive long-term repopulation assay. Stem cells were larger than lymphocytes and exhibited side light-scatter characteristic of blast cells. Most expressed low levels of Thy-1.2, high levels of Sca-1 (Ly6-A/E), H-2Kb, and AA4.1 antigens and stained brightly with rhodamine-123. Significantly, most long-term repopulating cells also expressed CD4, some at high density. In addition, a significant proportion displayed low to medium levels of the “lineage-specific” markers CD45R (B220), Gr- 1, and TER-119. A simple and rapid multiparameter sorting procedure enriched the stem cells 100-fold and substantially removed most other clonogenic cell types, including day 12 spleen colony-forming cells. Cells able to generate cobblestone colonies on stromal cells in vitro were co-enriched. Lethally irradiated mice transplanted with limiting numbers of the sorted stem cells did not survive unless cotransplanted with “compromised” marrow cells prepared by prior serial transplantation and shown to be depleted of long-term repopulating activity. A significant number of recipients transplanted with 25 to 100 sorted cells contained donor-derived B and T lymphocytes and granulocytes in their peripheral blood for at least 6 months. Limiting dilution analysis in vivo indicated that the frequency of competitive long-term repopulating units (CRU) in the sorted population was at least 1 in 60 cells. The calculated frequency of CRU was largely independent of the time of recipient analysis between 10 and 52 weeks, indicating that highly enriched stem cells can be recruited relatively early in certain transplant settings. This simple enrichment and assay strategy for repopulating hematopoietic stem cells should facilitate further analysis of their regulation in vivo.


2020 ◽  
Author(s):  
Diana Chaker ◽  
Christophe Desterke ◽  
Nicolas Moniaux ◽  
Tony Ernault ◽  
Noufissa Oudrhiri ◽  
...  

AbstractWe successfully converted hepatocytes isolated from adult mice into expandable and stable leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)-positive endodermal progenitor cells (EndoPCs). This was accomplished in vitro through transient exposure to four transcriptional factors (OCT3/4, SOX2, KLF4, and cMYC) and STAT3 activators. EndoPCs were generated by a process that involved an epithelial-mesenchymal transition (EMT) without the use of any components of the canonical WNT/β-catenin or LGR5/R-spondin signaling pathways. We showed that the proliferation and capacity for self-renewal of EndoPCs in 2D long-term culture were controlled by three interrelated signaling pathways: gp130/JAK/STAT3, LGR5/R-spondin, and WNT/β-catenin. After long-term maintenance in two- and three-dimensional culture systems, EndoPCs were able to differentiate into liver-restricted lineages such as hepatocyte-like cells and bile duct-like structures in vitro and in vivo. After intra-muscular injection, EndoPCs generated macroscopically visible and well-vascularized liver-like tissue, which contained Alb+ liver parenchyma-like structures and substantial, KRT7/KRT19+ bile duct-like cell organizations.ConclusionWe have developed an efficient method for producing LGR5+ adult endodermal stem cells. These cells will be useful for the in vitro study of the molecular mechanisms of liver development and have important potential for therapeutic strategies, including approaches based on bioengineered liver tissue. These cells also open up new avenues for experiments focused on disease modeling, toxicology studies, and regenerative medicine applications.


2020 ◽  
Author(s):  
Jack D. Adderley ◽  
Simona John von Freyend ◽  
Sarah A. Jackson ◽  
Megan J. Bird ◽  
Amy L. Burns ◽  
...  

AbstractIntracellular pathogens are known to mobilise host signaling pathways to manipulate gene expression in their host cell to promote their own survival. Surprisingly, evidence is emerging that specific signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap by providing a comprehensive and dynamic assessment of host erythrocyte signaling during the course of infection with Plasmodium falciparum. We used an antibody microarray that comprises 878 antibodies directed against human signaling proteins, >600 of which are phospho-specific, to interrogate the status of host erythrocyte signaling pathways at three stages of parasite development during the asexual cycle. This confirmed the pre-existing fragmentary data on the activation of a PAK-MEK pathway, and revealed the modulation of a large number of additional signaling elements during infection.We focussed on the receptor tyrosine kinase c-MET, also known as the hepatocyte growth factor receptor, and the MAP kinase pathway component B-Raf that is reported to lie downstream of c-MET in a number of cell types. Array data validated by Western blotting revealed that activation sites of c-MET are phosphorylated in trophozoite-infected erythrocytes, and we show that treatment of parasite cultures with c-MET or B-Raf selective inhibitors have nanomolar potency against in vitro proliferation of P. falciparum and the phylogenetically distant species P. knowlesi. Furthermore, we demonstrate that a c-MET inhibitor impairs in vivo proliferation of the rodent malaria parasite P. berghei in mice.Overall, we provide a comprehensive dataset on the modulation of host erythrocyte signaling during infection with malaria parasites, as well as a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5-5
Author(s):  
Luca Biasco ◽  
Serena Scala ◽  
Francesca Dionisio ◽  
Andrea Calabria ◽  
Luca Basso Ricci ◽  
...  

Abstract Hematopoietic stem cells (HSC) are endowed with the unique role of generating an adequate and efficient pool of blood cells throughout human life. Data derived from clonal tracking of HSC activity and hematopoietic dynamics directly in vivo in humans would be of paramount importance for the design of therapies for hematological disorders and cancers. Our gene therapy (GT) clinical trials for adenosine deaminase (ADA) deficient-SCID and Wiskott-Aldrich Syndrome (WAS) based on the infusion of genetically engineered HSC, constitute unique clinical settings where each vector-marked progenitors and its blood cell progeny is traceable being univocally barcoded by a vector integration site (IS). To study early dynamics of hematopoietic reconstitution in humans, we collected by LAM-PCR + Illumina-Miseq sequencing 14.807.407 sequence reads corresponding to 71.981 IS tagging clones belonging to 13 different cell types purified from the bone marrow and the peripheral blood of 4 WAS patients up to 36 months after GT. We firstly identified and quantified identical IS shared among CD34+ progenitors, and mature Myeloid/Lymphoid cells as marker of the real-time clonal output of individual vector-marked HSC clones in vivo. We unraveled the timing of short, intermediate and long term HSC output showing that CD34+ clones active at 3-6 months after GT are not detectable at later follow up. By unsupervised clustering of IS similarities among lineages we unveiled diverse input of HSPC clonal differentiation towards lymphoid, myeloid and megakaryo-erythroid cells and found that NK cells have a distinct relationship with HSPC as compared to T and B cells. We also profiled the level of HSPC output overtime showing that early reconstitution is markedly skewed towards myeloid production. Importantly, clonogenic progenitors generated in vitro from ex vivo purified CD34+ patients’ cells, showed a IS profile coherent with that of freshly purified BM and PB cell types from the same time-point. We also studied population clonal entropy through 7 different diversity indexes and uncovered that progenitor output occurs in distinct waves during the first 6-9 months after transplantation reaching a “homeostatic equilibrium” only by 12 months after GT. At steady state we estimated by mark-recapture mathematical approaches that 1900-7000 transduced HSC clones were stably contributing to the progenitors repertoire for up to 3 years after infusion of gene corrected CD34+ cells. To evaluate the long-term preservation of activity by transplanted HSC we exploited data derived from the IS-based tracking of 4.845 clones in ADA-SCID patients performed for up to 6 years after GT. We showed that identical IS are consistently detected at multiple lineages level even several years after GT. Strikingly, by semi-quantitative PCRs on specific vector-genome junctions we tracked a fluctuating but consistent output of marked HSC over a period of 5 years without the manifestation of clonal quiescence phases. Additionally, since the gamma-retroviral vector used in ADA-SCID HSC-GT trial is able to transduce only actively replicating cells, we provided the first evidence that in vitro activated HSC, “awaken” from dormancy, can still, once infused, retain in vivo long-term activity in humans. We exploited IS similarities among the lineages for both WAS and ADA-SCID datasets to reconstruct the hematopoietic hierarchy by combining conditional probability distributions and static/dynamic graphical models of dependencies. Notably, preliminary data unveiled a link between myeloid progenitors and mature lymphoid cells that supports the recently suggested model of hematopoiesis based on a delayed branching of myeloid and lymphoid lineages. Further mathematical models are being applied to specifically study population dynamics and single HSPC contribution to hematopoiesis including stochastic models of neutral clonal drift. More detailed analysis are also being performed on IS collected from 7 distinct CD34+ subtypes isolated from GT patients and FACS sorted according to the most recent markers of HSPC differentiation. Overall our work constitute the first molecular tracking of individual hematopoietic clones in humans providing an unprecedented detailed analysis of HSC activity and dynamics in vivo. The information gathered will be crucial for the design of therapeutic approaches for a broad spectrum of hematological diseases and tumors. Disclosures Neduva: GSK: Employment. Dow:GSK: Employment.


Sign in / Sign up

Export Citation Format

Share Document