scholarly journals Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs

2021 ◽  
Vol 22 (23) ◽  
pp. 12883
Author(s):  
Roberto Ciaccio ◽  
Piergiuseppe De Rosa ◽  
Sara Aloisi ◽  
Marta Viggiano ◽  
Leonardo Cimadom ◽  
...  

Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rizaldy C. Zapata ◽  
Besma S. Chaudry ◽  
Mariela Lopez Valencia ◽  
Dinghong Zhang ◽  
Scott A. Ochsner ◽  
...  

AbstractAlthough antipsychotics, such as olanzapine, are effective in the management of psychiatric conditions, some patients experience excessive antipsychotic-induced weight gain (AIWG). To illuminate pathways underlying AIWG, we compared baseline blood gene expression profiles in two cohorts of mice that were either prone (AIWG-P) or resistant (AIWG-R) to weight gain in response to olanzapine treatment for two weeks. We found that transcripts elevated in AIWG-P mice relative to AIWG-R are enriched for high-confidence transcriptional targets of numerous inflammatory and immunomodulatory signaling nodes. Moreover, these nodes are themselves enriched for genes whose disruption in mice is associated with reduced body fat mass and slow postnatal weight gain. In addition, we identified gene expression profiles in common between our mouse AIWG-P gene set and an existing human AIWG-P gene set whose regulation by immunomodulatory transcription factors is highly conserved between species. Finally, we identified striking convergence between mouse AIWG-P transcriptional regulatory networks and those associated with body weight and body mass index in humans. We propose that immunomodulatory transcriptional networks drive AIWG, and that these networks have broader conserved roles in whole body-metabolism.


2016 ◽  
Author(s):  
Alexandra M. Westbrook ◽  
Julius B. Lucks

ABSTRACTRNA transcriptional regulators are emerging as versatile components for genetic circuit construction. However, RNA transcriptional regulators suffer from incomplete repression, making their dynamic range less than that of their protein counterparts. This incomplete repression can cause expression leak, which impedes the construction of larger RNA synthetic regulatory networks. Here we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and RBS sequestration increases repression from 85% to 98% and activation from 10 fold to over 900 fold in response to cognate antisense RNAs. We also show that orthogonal versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this dual control mechanism, we use it to reduce circuit leak in an RNA-only transcriptional cascade that activates gene expression as a function of a small molecule input. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of larger and more sophisticated circuits.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1227-1227
Author(s):  
Jian Xu ◽  
Zhen Shao ◽  
Kimberly Glass ◽  
Daniel E. Bauer ◽  
Luca Pinello ◽  
...  

Abstract Abstract 1227 Erythropoiesis in mammals occurs in three waves consisting of primitive progenitors in the yolk sac, definitive erythroid precursors in the fetal liver and later in the postnatal bone marrow. The molecular determinants of developmental stage-specific gene expression programs remain largely unknown. Several transcription factors, including GATA1 and TAL1, are essential for normal erythroid development in vivo and are recognized as ‘master’ regulators. These lineage-specifying master regulators, together with other transcriptional co-regulators, act within complexes on chromatin, establish transcriptional networks, and orchestrate the differentiation process. However, it is less clear how master regulators control gene expression programs at different stages of development within the same cell lineage. We reasoned that comparative transcriptome, transcription factor, and epigenetic profiling of closely related cell types corresponding to distinct developmental stages should delineate the regulatory networks that are directly related to the associated gene expression programs. Classification of the trans- and cis-regulatory elements that are either shared or stage-specific should clarify their relative importance and prioritize functional candidates. To explore this approach, we focused on an ex vivo maturation system for human fetal and adult erythropoiesis. Primary human hematopoietic stem/progenitor cells (HSPCs) are propagated and induced for erythroid differentiation ex vivo. We first determined the mRNA expression profiles in both fetal and adult HSPCs and differentiating proerythroblasts (ProEs). Comparative transcriptome profiling revealed distinct gene expression programs at different stages of erythroid maturation. For example, 1039 and 1291 genes linked to distinct functional annotations were differentially expressed (fold change > 1.5, FDR < 0.05) in fetal and adult ProEs, respectively. To investigate the underlying basis of these distinct gene expression programs, we generated genome-wide maps for chromatin state and transcription factor occupancy by a ChIP-seq approach. Specifically, we profiled 9 histone modifications (H3K4me1/me2/me3, H3K9me3, H3K37me3, H3K36me2/me3, H3K9ac, and H3K27ac) and 6 transcription factors (GATA1, TAL1, NFE2, CTCF, RAD21, and RNA polymerase II) in both fetal and adult ProEs. Contrasting the similarities and differences between human fetal and adult erythropoiesis provides important insights into the erythroid gene expression programs and gene regulatory networks operating at different stages of development. We find that gene-distal enhancers, rather than promoters, are marked with highly stage-specific histone modifications and DNase I hypersensitivity, strongly correlate to developmental stage-specific gene expression changes, and are functionally active in a stage-specific manner. The master regulators GATA1 and TAL1 act cooperatively within active enhancers but have little predictive value for stage-specific transcriptional activity. Differential enrichment of consensus motifs for binding of transcription factors within fetal or adult stage-specific enhancers provides a strategy for identifying candidate co-regulators that drive differential gene expression and stage-specificity. By this computational approach and subsequent functional validation, we demonstrate that the interferon regulatory factors IRF2 and IRF6 are essential for activation of adult erythroid gene expression programs in cooperation with master regulators and cohesin-mediator complexes at distal enhancers. Thus, the comparative profiling of red cell development provides critical insights into the ontogeny of human erythropoiesis and temporal regulation of transcriptional networks in a mammalian genome. Disclosures: No relevant conflicts of interest to declare.


Cell Stress ◽  
2021 ◽  
Vol 5 (11) ◽  
pp. 167-172
Author(s):  
Giusy Battilana ◽  
Francesca Zanconato ◽  
Stefano Piccolo

Dysregulated gene expression is intrinsic to cell transformation, tumorigenesis and metastasis. Cancer-specific gene-expression profiles stem from gene regulatory networks fueled by genetic and epigenetic defects, and by abnormal signals of the tumor microenvironment. These oncogenic signals ultimately engage the transcriptional machinery on the cis -regulatory elements of a host of effector genes, through recruitment of transcription factors (TFs), co-activators and chromatin regulators. That said, whether gene -expression in cancer cells is the chaotic product of myriad regulations or rather a relatively ordered process orchestrated by few TFs (master regulators) has long remained enigmatic. Recent work on the YAP/TAZ co-activators has been instrumental to break new ground into this outstanding issue, revealing that tumor cells hijack growth programs that are active during development and regeneration through engagement of a small set of interconnected TFs and their nuclear partners.


2010 ◽  
Vol 77 (1) ◽  
pp. 187-200 ◽  
Author(s):  
Soraya Chaturongakul ◽  
Sarita Raengpradub ◽  
M. Elizabeth Palmer ◽  
Teresa M. Bergholz ◽  
Renato H. Orsi ◽  
...  

ABSTRACTA set of sevenListeria monocytogenes10403S mutant strains, each bearing an in-frame null mutation in a gene encoding a key regulatory protein, was used to characterize transcriptional networks inL. monocytogenes; the seven regulatory proteins addressed include all fourL. monocytogenesalternative sigma factors (σB, σC, σH, and σL), the virulence gene regulator PrfA, and the heat shock-related negative regulators CtsR and HrcA. Whole-genome microarray analyses, used to identify regulons for each of these 7 transcriptional regulators, showed considerable overlap among regulons. Among 188 genes controlled by more than one regulator, 176 were coregulated by σB, including 92 genes regulated by both σBand σH(with 18 of these genes coregulated by σB, σH, and at least one additional regulator) and 31 genes regulated by both σBand σL(with 10 of these genes coregulated by σB, σL, and at least one additional regulator). Comparative phenotypic characterization measuring acid resistance, heat resistance, intracellular growth in J774 cells, invasion into Caco-2 epithelial cells, and virulence in the guinea pig model indicated contributions of (i) σBto acid resistance, (ii) CtsR to heat resistance, and (iii) PrfA, σB, and CtsR to virulence-associated characteristics. Loss of the remaining transcriptional regulators (i.e.,sigH,sigL, orsigC) resulted in limited phenotypic consequences associated with stress survival and virulence. Identification of overlaps among the regulons provides strong evidence supporting the existence of complex regulatory networks that appear to provide the cell with regulatory redundancies, along with the ability to fine-tune gene expression in response to rapidly changing environmental conditions.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2008 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
Tom Appleton ◽  
Shirine Usmani ◽  
John Mort ◽  
Frank Beier

Background: Articular cartilage degeneration is a hallmark of osteoarthritis (OA). We previously identified increased expression of transforming growth factor alpha (TGF?) and chemokine (C-C motif) ligand 2 (CCL2) in articular cartilage from a rat modelof OA (1,2). We subsequently reported that TGF? signalling modified chondrocyte cytoskeletal organization, increased catabolic and decreased anabolic gene expression and suppressed Sox9. Due to other roles in chondrocytes, we hypothesized that the effects ofTGF? on chondrocytes are mediated by Rho/ROCK and MEK/ERK signaling pathways. Methods: Primary cultures of chondrocytes and articularosteochondral explants were treated with pharmacological inhibitors of MEK1/2(U0126), ROCK (Y27632), Rho (C3), p38 MAPK (SB202190) and PI3K (LY294002) to elucidate pathway involvement. Results: Using G-LISA we determined that stimulation of primary chondrocytes with TGF? activates RhoA. Reciprocally, inhibition of RhoA/ROCK but not other signalling pathways prevents modification of the actin cytoskeleton in responseto TGF?. Inhibition of MEK/ERKsignaling rescued suppression of anabolic gene expression by TGF? including SOX9 mRNA and protein levels. Inhibition of MEK/ERK, Rho/ROCK, p38 MAPK and PI3K signalling pathways differentially controlled the induction of MMP13 and TNF? gene expression. TGF? also induced expression of CCL2 specifically through MEK/ERK activation. In turn, CCL2 treatment induced the expression of MMP3 and TNF?. Finally, we assessed cartilage degradation by immunohistochemical detection of type II collagen cleavage fragments generated by MMPs. Blockade of RhoA/ROCK and MEK/ERK signalling pathways reduced the generation of type IIcollagen cleavage fragments in response to TGF? stimulation. Conclusions: Rho/ROCK signalling mediates TGF?-induced changes inchondrocyte morphology, while MEK/ERK signalling mediates the suppression ofSox9 and its target genes, and CCL2 expression. CCL2, in turn, induces the expression of MMP3 and TNF?, two potent catabolic factors known to be involved in OA. These pathways may represent strategic targets for interventional approaches to treating cartilage degeneration in osteoarthritis. References: 1. Appleton CTG et al. Arthritis Rheum 2007;56:1854-68. 2. Appleton CTG et al. Arthritis Rheum 2007; 56:3693-705.


Sign in / Sign up

Export Citation Format

Share Document