scholarly journals Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review

2021 ◽  
Vol 23 (1) ◽  
pp. 29
Author(s):  
Daniele Focosi ◽  
Fabrizio Maggi ◽  
Massimo Franchini ◽  
Scott McConnell ◽  
Arturo Casadevall

The accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID-19-convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), a few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of the spike protein (e.g., ΔHV69-70, ∆LGVY141-144 and ΔAL243-244). The continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and the fitness of emerging variants.

2021 ◽  
Author(s):  
Daniele Focosi ◽  
Fabrizio Maggi ◽  
Massimo Franchini ◽  
Scott McConnell ◽  
Arturo Casadevall

Accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID19 convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), the few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of Spike protein (e.g, delHV69-70, delLGVY141-144 and delAL243-244). Continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and fitness of emerging variants.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Li Zhang ◽  
Zhimin Cui ◽  
Qianqian Li ◽  
Bo Wang ◽  
Yuanling Yu ◽  
...  

AbstractEmerging mutations in SARS-CoV-2 cause several waves of COVID-19 pandemic. Here we investigate the infectivity and antigenicity of ten emerging SARS-CoV-2 variants—B.1.1.298, B.1.1.7(Alpha), B.1.351(Beta), P.1(Gamma), P.2(Zeta), B.1.429(Epsilon), B.1.525(Eta), B.1.526-1(Iota), B.1.526-2(Iota), B.1.1.318—and seven corresponding single amino acid mutations in the receptor-binding domain using SARS-CoV-2 pseudovirus. The results indicate that the pseudovirus of most of the SARS-CoV-2 variants (except B.1.1.298) display slightly increased infectivity in human and monkey cell lines, especially B.1.351, B.1.525 and B.1.526 in Calu-3 cells. The K417N/T, N501Y, or E484K-carrying variants exhibit significantly increased abilities to infect mouse ACE2-overexpressing cells. The activities of furin, TMPRSS2, and cathepsin L are increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y cause significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines elicited serum is mainly caused by the E484K mutation. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants. Our study provides insights regarding therapeutic antibodies and vaccines, and highlights the importance of E484K mutation.


2021 ◽  
Author(s):  
Nazia Thakur ◽  
Giulia Gallo ◽  
Joseph Newman ◽  
Thomas P Peacock ◽  
Luca Biasetti ◽  
...  

Following the emergence of SARS-CoV-2 in China in late 2019 a number of variants have emerged, with two of these, Alpha and Delta, subsequently growing to global prevalence. One characteristic of these variants are changes within the Spike protein, in particular the receptor binding domain (RBD). From a public health perspective these changes have important implications for increased transmissibility and immune escape; however, their presence could also modify the intrinsic host-range of the virus. Using viral pseudotyping we examined whether the variants of concern (VOCs) Alpha, Beta, Gamma and Delta have differing host ACE2 receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes which we subsequently attribute to N501Y and E484K substitutions within the Spike RBD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengchao Ding ◽  
Jun He ◽  
Xiangyu Zhang ◽  
Chengcheng Jiang ◽  
Yong Sun ◽  
...  

Small number of SARS-CoV-2 epidemic lineages did not efficiently exhibit a neutralization profile, while single amino acid mutation in the spike protein has not been confirmed in altering viral antigenicity resulting in immune escape. To identify crucial mutations in spike protein that escape humoral immune response, we evaluated the cross-neutralization of convalescent plasmas and RBD-specific monoclonal antibodies (mAbs) against various spike protein-based pseudoviruses. Three of 24 SARS-CoV-2 pseudoviruses containing different mutations in spike protein, including D614G, A475V, and E484Q, consistently showed an altered sensitivity to neutralization by convalescent plasmas. A475V and E484Q mutants are highly resistant to neutralization by mAb B38 and 2-4, suggesting that some crucial mutations in spike protein might evolve SARS-CoV-2 variants capable of escaping humoral immune response.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Cong Wang ◽  
Chen Hua ◽  
Shuai Xia ◽  
Weihua Li ◽  
Lu Lu ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) has continuously posed a threat to public health worldwide, yet no therapeutics or vaccines are currently available to prevent or treat MERS-CoV infection. We previously identified a fusion inhibitory peptide (HR2P-M2) targeting the MERS-CoV S2 protein HR1 domain and a highly potent neutralizing monoclonal antibody (m336) specific to the S1 spike protein receptor-binding domain (RBD). However, m336 was found to have reduced efficacy against MERS-CoV strains with mutations in RBD, and HR2P-M2 showed low potency, thus limiting the clinical application of each when administered separately. However, we herein report that the combination of m336 and HR2P-M2 exhibited potent synergism in inhibiting MERS-CoV S protein-mediated cell–cell fusion and infection by MERS-CoV pseudoviruses with or without mutations in the RBD, resulting in the enhancement of antiviral activity in contrast to either one administered alone. Thus, this combinatorial strategy could be used in clinics for the urgent treatment of MERS-CoV-infected patients.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kathryn E Kistler ◽  
Trevor Bedford

Seasonal coronaviruses (OC43, 229E, NL63, and HKU1) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. It is not known to what extent reinfection by these viruses is due to waning immune memory or antigenic drift of the viruses. Here we address the influence of antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein that are exposed to human humoral immunity. This suggests that reinfection may be due, in part, to positively selected genetic changes in these viruses that enable them to escape recognition by the immune system. It is possible that, as with seasonal influenza, these adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a vaccine made against them.


2021 ◽  
Author(s):  
Yuko Nitahara ◽  
Yu Nakagama ◽  
Natsuko Kaku ◽  
Katherine Candray ◽  
Yu Michimuko ◽  
...  

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine facilitated population immunity, which shall become more dominant than natural infection-induced immunity. At the beginning of the vaccine era, the initial epitope profile in naive individuals will be the first step to build an optimal host defense system towards vaccine-based population immunity. In this study, the high-resolution linear epitope profiles between Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the RBD than that induced by the natural infection. The relatively lower neutralizing antibody titers observed in vaccine-induced sera could attribute to less efficient epitope selection and maturation of the vaccine-induced humoral immunity compared to the infection-induced. Furthermore, additional mutation panel assays showed that the vaccine-induced rich epitope variety targeting the RBD may aid antibodies to escape rapid viral evolution, which could grant an advantage to the vaccine immunity.


Author(s):  
Venkata Viswanadh Edara ◽  
Carson Norwood ◽  
Katharine Floyd ◽  
Lilin Lai ◽  
Meredith E. Davis-Gardner ◽  
...  

SUMMARYThe emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies to neutralize these variants. We compared antibody binding and live virus neutralization of sera from naturally infected and spike mRNA vaccinated individuals against a circulating SARS-CoV-2 B.1 variant and the emerging B.1.351 variant. In acutely-infected (5-19 days post-symptom onset), convalescent COVID-19 individuals (through 8 months post-symptom onset) and mRNA-1273 vaccinated individuals (day 14 post-second dose), we observed an average 4.3-fold reduction in antibody titers to the B.1.351-derived receptor binding domain of the spike protein and an average 3.5-fold reduction in neutralizing antibody titers to the SARS-CoV-2 B.1.351 variant as compared to the B.1 variant (spike D614G). However, most acute and convalescent sera from infected and all vaccinated individuals neutralize the SARS-CoV-2 B.1.351 variant, suggesting that protective immunity is retained against COVID-19.


2021 ◽  
Author(s):  
Lisa R Volpatti ◽  
Rachel P Wallace ◽  
Shijie Cao ◽  
Michal Raczy ◽  
Ruyi Wang ◽  
...  

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.


Sign in / Sign up

Export Citation Format

Share Document