scholarly journals Planar UWB Monopole Antenna with Tri-Band Rejection Characteristics at 3.5/5.5/8 GHz

Information ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Jian Dong ◽  
Xin Zhuang ◽  
Guoqiang Hu

A triple band-notched ultrawide band (UWB) antenna is presented to avoid the interference of services working in the UWB band, such as WLAN, WiMAX and X-band satellite systems. The arc H-shaped slot on the radiating patch creates a low frequency notched band, while the other two band-notched bands are formed by cutting narrow slots on the ground plane. The presented antenna can operate on the ultrawide band efficiently and inhibit interference from three different kinds of narrow band communication systems. The simulation and measurement results show that the antenna has excellent band-notched function on the rejectband and almost omnidirectional radiation pattern on the passband.

2020 ◽  
Vol 10 (6) ◽  
pp. 6557-6562
Author(s):  
S. Alotaibi ◽  
A. A. Alotaibi

In this work, a new ultra-wideband (UWB) antenna design with 2.08GHz to 12GHz impedance bandwidth and triple-band specifications is presented. The proposed antenna is formed by a truncated square patch, a partial ground plane, and a 50Ω microstrip line. Three different types of slots were used in order to induce notched bands. A C-shaped slot is etched on the radiating patch to obtain a notched band in 3.31-4.21GHz for WiMAX. An inverted U-shaped slot in the micro-strip line induces a second notched band in order to reduce the interference with the WLAN [5.04-6.81GHz]. Finally, two inverted L-shaped slots around the micro-ribbon line on the ground plane allow the X-band [9.13 to 10.75GHz]. The antenna has dimensions of 32×28×1.6mm3. The Ansoft software (HFSS) was used to simulate the proposed structure. The simulation results are in good agreement with the measurement results. The antenna shows an omnidirectional radiation pattern.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2017 ◽  
Vol 6 (4) ◽  
pp. 36-41 ◽  
Author(s):  
H. S. Mewara ◽  
D. Jhanwar ◽  
M. M. Sharma ◽  
J. K. Deegwal

A novel hammer-shaped UWB printed antenna with triple notched stop bands is presented and fabricated on FR-4 substrate with size of 40×40×1.6 mm3. The proposed antenna is composed of hammer-shaped patch with C-shaped slot, U-shaped slot on feed line, and inverted stepped notch and bevel edges with pair of L-shaped slots in partial ground plane. The fabricated antenna is tested and obtained impedance bandwidth 2.89 ̶ 11.6 GHz with three notched stop bands 3.15 ̶ 3.7 GHz, 5.45 ̶ 6.8 GHz, and 7.5 ̶  8.8 GHz, for radiolocation system (RLS), wireless local area networks (WLAN), and X-band satellite communication system (XSCS) bands, respectively. Moreover, the antenna result shows omnidirectional radiation pattern, average gain of 3.10 dBi over the whole UWB band except at the notched frequency bands.


2017 ◽  
Vol 6 (2) ◽  
pp. 53 ◽  
Author(s):  
E. K. I. Hamad ◽  
N. Mahmoud

Compact microstrip-fed printed monopole antenna with triple band-notched characteristics is suggested for ultra-wideband (UWB) applications. The antenna is constructed of a conventional rectangular microstrip patch antenna with partial ground plane and T-shaped strip employed in the ground plane as well as an inverted Ω- and L-shaped slots incorporated within the radiated element. The notched functions are created by the inverted Ω- and L-shaped slots, which are realized for WiMAX (from 2.69 to 4.5 GHz) and WLAN (from 5.49 to 6.37 GHz). The T-shaped parasitic strip generates the third notch for the X-band uplink satellite communication (from 8.15 to 9.61 GHz). The measured operating -10 dB bandwidth of the proposed antenna extends from 2.39 to more than 18 GHz except at the notched bands. The prototype antenna has a total area of 20×20×1.6 mm3. Electromagnetic (EM) simulations are carried out using 3D full-wave FEM-based simulator. EM simulation results are in good agreement with measurement results. The radiation pattern of the proposed antenna is nearly Omni-directional over the whole targeted band.


2013 ◽  
Vol 846-847 ◽  
pp. 521-525
Author(s):  
Zheng Lin Zhou ◽  
Ming Li

A compact coplanar waveguide fed UWB (ultra-wideband) antenna with triple band-notched characteristics is presented. The rectangle radiation patch is used in the new design, and the bandwidth of the UWB antenna is extended by using circle corner for the rectangle cut from the ground. A parasitic element is added, whereas an inverted U-shaped slot is cut on the top of the CPW ground plane and a U-shaped slot is cut on the rectangle radiation patch. As a result, a triple band-notched characteristic is obtained, by which the potential interference between UWB and WLAN (Wireless Local Area Networks), C-band and X-band systems can be effectively reduced.


2020 ◽  
Vol 9 (1) ◽  
pp. 35-40
Author(s):  
M. Elhabchi ◽  
M. N. Srifi ◽  
R. Touahni

In this paper, we present a modified UWB antenna with hexagonal slotted ground plane inspired with a double combined symmetric T-shaped slots and dual rotated L-shaped strip for dual band notched characteristics. Initially, the operating frequency range is from 3GHz to 12 GHz. To eliminate the unwanted C-band (3.625-4.2GHz) and the entire uplink and downlink of X-band satellite communication systems (7.25 -8.39 GHz) frequency bands, we are investigating the conventional UWB patch antenna and loaded it with a mentioned strips and slots respectively. The performances of the antenna are optimized both by CST Microwave Studio and Ansoft HFSS. To further analyze the parametric effects of the slots and strips, the surface current distribution is presented and discussed. The antenna gain versus frequency gives an acceptable value except the notched band regions, these values are   reduced from its normal  to be  a negative in  the notched bands (3.625-4.2GHz) and (7.25 to 8.39 GHz).


Author(s):  
Ekta Thakur ◽  
Naveen Jaglan ◽  
Samir Dev Gupta

Abstract This research paper introduces a ultra-wideband (UWB) multiple input multiple output (MIMO)/diversity antenna with three rejected bands using one compact electromagnetic band gap (EBG) structure. The suggested EBG structure rejects three bands at WiMAX, WLAN, and the X-band within the passband of the UWB antenna. To achieve compactness in the conventional EBG structure, two via and square slots are introduced. This structure contributes to better impedance matching by using tapered feedline and slots in the radiating patch. To improve the isolation among all four compact UWB monopoles, decoupling strips are extended from the ground plane. Furthermore, the |S21| is below 17 dB in between the antenna elements and the envelope correlation coefficient is below 0.5, which are tolerable values within the UWB range. Furthermore, different MIMO/diversity characteristics are also discussed. An FR-4 substrate with dimensions of 38 × 45 × 1.6 mm3 is used for the fabrication of the suggested structure.


Author(s):  
Lei Li ◽  
Jingchang Nan ◽  
Jing Liu ◽  
Chengjian Tao

Abstract A compact ultrawideband (UWB) antenna with reconfigurable triple band notch characteristics is proposed in this paper. The antenna consists of a coplanar waveguide-fed top-cut circular-shaped radiator with two etched C-shaped slots, a pair of split-ring resonators (SRRs) on the backside and four p-type intrinsic n-type (PIN) diodes integrated in the slots and SRRs. By controlling the current distribution in the slots and SRRs, the antenna can realize eight band notch states with independent switch ability, which allows UWB to coexist with 5G (3.3–4.4 GHz)/WiMAX (3.3–3.6 GHz), WLAN (5.15–5.825 GHz), and X-band (7.9–8.4 GHz) bands without interference. By utilizing a nested structure of C-shaped slots and SRRs on the backside, a compact size of 18 × 19.5 mm2 is achieved along with multimode triple band notch reconfigurability. The antenna covers a bandwidth of 3.1–10.6 GHz. A prototype is fabricated and tested. The simulated and experimental results are in good agreement.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2017 ◽  
Vol 24 (1) ◽  
pp. 73-79
Author(s):  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Mohammad Rashed Iqbal Faruque ◽  
Rabah W. Aldhaheri ◽  
Md. Samsuzzaman

AbstractA compact ultra-wideband (UWB) antenna is presented in this paper with a partial ground plane on epoxy woven glass material. The study is discussed to comprehend the effects of various design parameters with explicit parametric analyses. The overall antenna dimension is 0.22×0.26×0.016 λ. A prototype is made on epoxide woven glass fabric dielectric material of 1.6 mm thickness. The measured results point out that the reported antenna belongs to a wide bandwidth comprehending from 3 GHz to more than 11 GHz with VSWR<2. It has a peak gain of 5.52 dBi, where 3.98 dBi is the average gain. Nearly omnidirectional radiation patterns are observed within the operating frequency bands. A good term exists between simulation and measurement results, which lead the reported antenna to be an appropriate candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document