scholarly journals Machine Learning and IoT Applied to Cardiovascular Diseases Identification through Heart Sounds: A Literature Review

Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 73
Author(s):  
Ivo Sérgio Guimarães Brites ◽  
Lídia Martins da Silva ◽  
Jorge Luis Victória Barbosa ◽  
Sandro José Rigo ◽  
Sérgio Duarte Correia ◽  
...  

This article presents a systematic mapping study dedicated to conduct a literature review on machine learning and IoT applied in the identification of diseases through heart sounds. This research was conducted between January 2010 and July 2021, considering IEEE Xplore, PubMed Central, ACM Digital Library, JMIR—Journal of Medical Internet Research, Springer Library, and Science Direct. The initial search resulted in 4372 papers, and after applying the inclusion and exclusion criteria, 58 papers were selected for full reading to answer the research questions. The main results are: of the 58 articles selected, 46 (79.31%) mention heart rate observation methods with wearable sensors and digital stethoscopes, and 34 (58.62%) mention care with machine learning algorithms. The analysis of the studies based on the bibliometric network generated by the VOSviewer showed in 13 studies (22.41%) a trend related to the use of intelligent services in the prediction of diagnoses related to cardiovascular disorders.

Author(s):  
Ivo S. G. Brites ◽  
Lidia M. Silva ◽  
Jorge Luis Victória Barbosa ◽  
Sandro J. Rigo ◽  
Sergio Duarte Correia ◽  
...  

This article presents a systematic mapping study dedicated to conduct a literature review on machine learning and IoT applied in the identification of diseases through heart sounds. This research was conducted between January 2010 and July 2021, considering IEEE Xplore, PubMed Central, ACM Digital Library, JMIR- Journal of Medical Internet Research, Springer Library, and Science Direct. The initial search resulted in 4,372 papers, and after applying the inclusion and exclusion criteria, 58 papers were selected for full reading to answer the research questions. The main results are: of the 58 articles selected, 46 (79.31%) mention heart rate observation methods with wearable sensors and digital stethoscopes, and 34 (58.62%) mention care with machine learning algorithms. The analysis of the studies based on the bibliometric network generated by the VOSviewer showed in 13 studies (22.41%) a trend related to the use of intelligent services in the prediction of diagnoses related to cardiovascular disorders.


Societies ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 70
Author(s):  
Costas S. Constantinou ◽  
Andrew Timothy Ng ◽  
Chase Beverley Becker ◽  
Parmida Enayati Zadeh ◽  
Alexia Papageorgiou

This paper presents the results of a narrative literature review on the use of interpreters in medical education. A careful search strategy was based on keywords and inclusion and exclusion criteria, and used the databases PubMed, Medline Ovid, Google Scholar, Scopus, CINAHL, and EBSCO. The search strategy resulted in 20 articles, which reflected the research aim and were reviewed on the basis of an interpretive approach. They were then critically appraised in accordance with the “critical assessment skills programme” guidelines. Results showed that the use of interpreters in medical education as part of the curriculum is scarce, but students have been trained in how to work with interpreters when interviewing patients to fully develop their skills. The study highlights the importance of integrating the use of interpreters in medical curricula, proposes a framework for achieving this, and suggests pertinent research questions for enriching cultural competence.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5953 ◽  
Author(s):  
Parastoo Alinia ◽  
Ali Samadani ◽  
Mladen Milosevic ◽  
Hassan Ghasemzadeh ◽  
Saman Parvaneh

Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.


Cataract is a degenerative condition that, according to estimations, will rise globally. Even though there are various proposals about its diagnosis, there are remaining problems to be solved. This paper aims to identify the current situation of the recent investigations on cataract diagnosis using a framework to conduct the literature review with the intention of answering the following research questions: RQ1) Which are the existing methods for cataract diagnosis? RQ2) Which are the features considered for the diagnosis of cataracts? RQ3) Which is the existing classification when diagnosing cataracts? RQ4) And Which obstacles arise when diagnosing cataracts? Additionally, a cross-analysis of the results was made. The results showed that new research is required in: (1) the classification of “congenital cataract” and, (2) portable solutions, which are necessary to make cataract diagnoses easily and at a low cost.


Author(s):  
R. Suganya ◽  
Rajaram S. ◽  
Kameswari M.

Currently, thyroid disorders are more common and widespread among women worldwide. In India, seven out of ten women are suffering from thyroid problems. Various research literature studies predict that about 35% of Indian women are examined with prevalent goiter. It is very necessary to take preventive measures at its early stages, otherwise it causes infertility problem among women. The recent review discusses various analytics models that are used to handle different types of thyroid problems in women. This chapter is planned to analyze and compare different classification models, both machine learning algorithms and deep leaning algorithms, to classify different thyroid problems. Literature from both machine learning and deep learning algorithms is considered. This literature review on thyroid problems will help to analyze the reason and characteristics of thyroid disorder. The dataset used to build and to validate the algorithms was provided by UCI machine learning repository.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1557 ◽  
Author(s):  
Ilaria Conforti ◽  
Ilaria Mileti ◽  
Zaccaria Del Prete ◽  
Eduardo Palermo

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


Sign in / Sign up

Export Citation Format

Share Document