scholarly journals Advanced Progress Control of Infrastructure Construction Projects Using Terrestrial Laser Scanning Technology

2020 ◽  
Vol 5 (10) ◽  
pp. 83 ◽  
Author(s):  
Chengyi Zhang ◽  
David Arditi

Effective progress control is vital for steering infrastructure construction to completion with minimum delay. Walking through the infrastructure project site to record progress in different activities is time-consuming, requiring information extracted from construction drawings, schedules, and budgets, as well as data collected from the construction site. This process can be automated by using advanced remote sensing technologies. This study contributes to progress monitoring in large horizontal infrastructure projects. It presents a practical automated method using laser scanning technology that can track the project’s progress in a real construction environment with limited human input. It is robust and accurate and is currently operational. The system capitalizes on the success of laboratory experiments. This system deals with occlusions effectively, accelerates the registration process of multiple scans, reduces the noise in the data, recognizes the objects of irregular shape, and is economically feasible. It provides evidence that all current challenges encountered in using laser scanners in monitoring construction progress can be overcome. This method has been successfully tested in the Wacker Drive reconstruction project in Chicago, IL.

2019 ◽  
Vol 11 (9) ◽  
pp. 1102 ◽  
Author(s):  
Reza Maalek ◽  
Derek D. Lichti ◽  
Janaka Y. Ruwanpura

This manuscript provides a robust framework for the extraction of common structural components, such as columns, from terrestrial laser scanning point clouds acquired at regular rectangular concrete construction projects. The proposed framework utilizes geometric primitive as well as relationship-based reasoning between objects to semantically label point clouds. The framework then compares the extracted objects to the planned building information model (BIM) to automatically identify the as-built schedule and dimensional discrepancies. A novel method was also developed to remove redundant points of a newly acquired scan to detect changes between consecutive scans independent of the planned BIM. Five sets of point cloud data were acquired from the same construction site at different time intervals to assess the effectiveness of the proposed framework. In all datasets, the framework successfully extracted 132 out of 133 columns and achieved an accuracy of 98.79% for removing redundant surfaces. The framework successfully determined the progress of concrete work at each epoch in both activity and project levels through earned value analysis. It was also shown that the dimensions of 127 out of the 132 columns and all the slabs complied with those in the planned BIM.


Author(s):  
R. K. Shah

<p>Accurate information of locations from visual aspect is vital for efficient resource planning and managing the workspace conflicts in the earthwork operations, which are missing in the existing linear schedules. Hence, the construction managers have to depend on the subjective decisions and intangible imagining for resources allocation, workspace conflicts and location-based progress monitoring in the earthwork projects. This has caused uncertainties in planning and scheduling of earthworks, and consequently delays and cost overruns of the projects. To overcome these issues, a framework of computer based prototype model was developed using the theory of location-based planning. This paper focuses on the case study experiments to demonstrate the functions of the model, which includes automatic generation of location-based earthwork schedules and visualisation of cut-fill locations on a weekly basis. The experiment results confirmed the model’s capability in identifying precise weekly locations of cut-fill and also visualising the time-space conflicts at the earthwork projects. Hence, the paper concludes that the model is a useful decision supporting tool to improve site productivity and reduce production cost of earthworks in the construction projects like roads and railways. </p><p><em>Journal of Advanced College of Engineering and Management, Vol. 1, 2015</em>, pp. 75-84</p>


Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as <i>in fine</i> documenting the quality of the registration.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thu Anh Nguyen ◽  
Phong Thanh Nguyen ◽  
Sy Tien Do

The construction industry has played an essential role in the process of modernization and industrialization and it has also been a major factor in determining the development of the infrastructure for other economic sectors. Construction companies consider the measurement of work progress, which often wastes time and has a low resolution, to be one of the most challenging problems faced by project management. Therefore, this research aimed to propose practical solutions by applying recent technological achievements of the 4.0 industrial revolution to improve the efficiency of the quantity management process. By utilizing the advantages and features of a BIM model and 3D laser scanning, this paper proposes that adopting a BIM model and 3D laser scanning has the potential to improve the accuracy and efficiency of the quantity management process. The case study demonstrated some typical tasks to evaluate accuracy and efficiency as well as to showcase the research proposal.


Author(s):  
D. Wujanz ◽  
F. Neitzel

Despite the enormous popularity of terrestrial laser scanners in the field of Geodesy, economic aspects in the context of data acquisition are mostly considered intuitively. In contrast to established acquisition techniques, such as tacheometry and photogrammetry, optimisation of the acquisition configuration cannot be conducted based on assumed object coordinates, as these would change in dependence to the chosen viewpoint. Instead, a combinatorial viewpoint planning algorithm is proposed that uses a given 3D-model as an input and simulates laser scans based on predefined viewpoints. The method determines a suitably small subset of viewpoints from which the sampled object surface is preferably large. An extension of the basic algorithm is proposed that only considers subsets of viewpoints that can be registered to a common dataset. After exemplification of the method, the expected acquisition time in the field is estimated based on computed viewpoint plans.


2021 ◽  
Author(s):  
Yujie Yan ◽  
Jerome F. Hajjar

Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.


2020 ◽  
Vol 12 (22) ◽  
pp. 3796
Author(s):  
Maria Rashidi ◽  
Masoud Mohammadi ◽  
Saba Sadeghlou Kivi ◽  
Mohammad Mehdi Abdolvand ◽  
Linh Truong-Hong ◽  
...  

Over the last decade, particular interest in using state-of-the-art emerging technologies for inspection, assessment, and management of civil infrastructures has remarkably increased. Advanced technologies, such as laser scanners, have become a suitable alternative for labor intensive, expensive, and unsafe traditional inspection and maintenance methods, which encourage the increasing use of this technology in construction industry, especially in bridges. This paper aims to provide a thorough mixed scientometric and state-of-the-art review on the application of terrestrial laser scanners (TLS) in bridge engineering and explore investigations and recommendations of researchers in this area. Following the review, more than 1500 research publications were collected, investigated and analyzed through a two-fold literature search published within the last decade from 2010 to 2020. Research trends, consisting of dominated sub-fields, co-occurrence of keywords, network of researchers and their institutions, along with the interaction of research networks, were quantitatively analyzed. Moreover, based on the collected papers, application of TLS in bridge engineering and asset management was reviewed according to four categories including (1) generation of 3D model, (2) quality inspection, (3) structural assessment, and (4) bridge information modeling (BrIM). Finally, the paper identifies the current research gaps, future directions obtained from the quantitative analysis, and in-depth discussions of the collected papers in this area.


2018 ◽  
Vol 142 (11-12) ◽  
pp. 576-577 ◽  
Author(s):  
Mateo Gašparović ◽  
Ivan Balenović ◽  
Ante Seletković ◽  
Anita Simic Milas

Digitalni model reljefa (DTM, engl. Digital Terrain Model) ima široku i važnu primjenu u mnogim djelatnostima, uključujući i šumarstvo. Međutim, precizno modeliranje terena, odnosno izrada DTM-a u šumama, bilo korištenjem terenskih metoda ili metoda daljinskih istraživanja, izazovan je i vrlo zahtjevan zadatak. U većini razvijenih zemalja svijeta, zračno lasersko skeniranje (ALS, engl. Airborne Laser Scanning) bazirano na LiDAR (engl. Light Detection and Ranging) tehnologiji trenutno predstavlja glavnu metodu za izradu DTM-a. Uslijed mogućnosti laserskog zračenja da penetrira kroz krošnje drveća, LiDAR tehnologija se pokazala kao efektivna i brza metoda za izradu DTM-a u šumskim područjima s vrlo velikom točnošću. Međutim, u mnogim zemljama svijeta, uključujući i Hrvatsku, zračno lasersko skeniranje nije u potpunosti provedeno, tj. samo su manji dijelovi zemlje pokriveni s podacima zračnog laserskog skeniranja. U tim slučajevima, DTM temeljen na stereo-fotogrametrijskoj izmjeri aerosnimaka potpomognut s terenskim podacima najčešće predstavlja glavni izvor informacija za izradu DTM-a. Poznato je da tako izrađen DTM u šumskim predjelima ima manju točnost od DTM-a dobivenog na temelju zračnog laserskog skeniranja zbog pokrivenosti terena vegetacijom. Također, u okviru nedavno provedenog istraživanja (Balenović i dr., 2018) utvrđeno je da takvi službeni fotogrametrijski digitalni podaci terena u šumskim predjelima sadrže određen broj tzv. grubih grešaka, koje mogu značajno utjecati na točnost izrađenog DTM-a. Nakon vizualnog detektiranja i manualnog uklanjanja tih pogrešaka, Balenović i dr. (2018) utvrdili su značajno poboljšanje točnosti fotogrametrijskog DTM-a. Stoga je glavni cilj ovoga rada razviti automatsku metodu za detekciju i eliminaciju vertikalnih pogrešaka u fotogrametrijskim digitalnim podacima terena te na taj način poboljšati točnost fotogrametrijskog DTM-a u nizinskim šumskim područjima Hrvatske. Ideja je razviti brzu, jednostavnu i učinkovitu metodu koja će biti primjenjiva i za druga šumska područja sličnih karakteristika, a za koja ne postoje DTM dobiven zračnim laserskim skeniranjem. Istraživanje je provedeno u nizinskim šumama na području gospodarske jedinice Jastrebarski lugovi, u neposrednoj blizini Jastrebarskog (Slika 1). Istraživanjem je obuhvaćena površina od 2.005,74 ha, na kojoj su u najvećoj mjeri zastupljene jednodobne sastojine hrasta lužnjaka (Quercus robur L.), a u ma­njoj mjeri jednodobne sastojine poljskog jasena (Fraxinus angustifolia L.) te jednodobne sastojine običnoga graba (Carpinus betulus L.). Nadmorska visina područja istraživanja kreće se u rasponu od 105 do 121 m. Fotogrametrijski DTM (DTM<sub>PHM</sub>) je izrađen iz digitalnih vektorskih podataka terena (prijelomnice, linije oblika, markantne točke terena i pravokutne mreže visinskih točaka) nabavljenih iz Državne geodetske uprave (Slika 2). Ti podaci predstavljaju nacionalni standard i jedini su dostupni podaci za izradu DTM-a u Hrvatskoj. Detaljan opis vektorskih podataka dan je u radu Balenović i dr. (2018). Prvo je iz digitalnih terenskih podataka izrađena nepravilna mreža trokuta, koja je potom linearnom interpolacijom pretvorena u rasterski DTM<sub>PHM</sub> prostorne rezolucije (veličine piksela) 0,5 m. Automatska metoda za detekciju i eliminaciju vertikalnih pogrešaka fotogrametrijskog DTM-a u nizinskim šumskim područjima razvijena je u slobodnom programskom paketu Grass GIS (Slika 3). Kombinacijom vrijednosti nagiba i tangencijalne zakrivljenosti terena rasterskog DTM<sub>PHM</sub> (Slika 4), automatskom metodom su detektirane 91 grube greške (engl. outliers). Drugim riječima, utvrđeno je da 91 točkasti vektorski objekt pogrešno prikazuje stvarnu visinu terena. Navedeni broj čini 3,2 % od ukupnog broja točkastih objekata korištenih za izradu DTM<sub>PHM</sub>-a. Nakon eliminacije detektiranih pogrešaka izrađen je novi, korigirani fotogrametrijski DTM (DTM<sub>PHMc</sub>). Za ocjenu vertikalne točnosti izvornog (DTM<sub>PHM</sub>) i korigiranog DTM-a (DTM<sub>PHMc</sub>) korišten je visoko precizni DTM dobiven zračnim laserskim skeniranjem (DTM<sub>LiD</sub>). U tu svrhu su izrađeni rasteri razlika između DTM<sub>PHM </sub>i DTM<sub>LiD</sub>, te između DTM<sub>PHMc </sub>i DTM<sub>LiD</sub>. Kako je preliminarnom analizom utvrđeno da vertikalne razlike između DTM<sub>PHM </sub>i DTM<sub>LiD</sub> nisu normalno distribuirane (Slika 5), za ocjenu točnosti su uz normalne mjere točnosti korištene i tzv. robusne mjere točnosti (Tablica 2). Dobiveni rezultati ukazuju na poboljšanje vertikalne točnosti fotogrametrijskog DTM-a primjenom razvijene automatske metode. To je posebice uočljivo na podpodručjima 2 i 3 (Slika 6 i 7) u kojima se nakon uklanjanja detektiranih grešaka, korijen srednje kvadratne pogreške (RMSE, engl. root mean square error) smanjio za 8 % odnosno 50 % (Tablica 2). Na temelju dobivenih rezultata i usporedbe s DTM<sub>LiD</sub>, može se zaključiti da predložena metoda uspješno detektira i eliminira vertikalne pogreške fotogrametrijskog DTM-a u nizinskim šumskim područjima, te slijedom toga poboljšava njegovu vertikalnu točnost.


2016 ◽  
Vol 10 (6) ◽  
pp. 941-949
Author(s):  
Titus Haas ◽  
◽  
Maximilian Warhanek ◽  
Michael Dietlicher ◽  
Konrad Wegener ◽  
...  

Combining an optical laser scanning system with mechanical axes in a redundant configuration and synchronised control allows the separation of scanning motions according to the strengths of the two systems. Assigning the highly dynamic movement part to the agile optical axes reduces the acceleration and jerk of the mechanical axes. The mechanical axes enable precise motion over the whole workspace, that cannot be achieved by optical systems. The determination of the ideal trajectory separation among the two redundant systems poses an optimisation problem. This study proposes a method for the calculation of the optimal trajectory separation and for productivity increases. Furthermore, a windowing technique is introduced to limit the required computational power. The operation of the optimisation algorithm is demonstrated based on example geometries. It is shown that the machining time is decreased, and the jerk of the solution is minimised. The method is verified using a laser scanning system.


Sign in / Sign up

Export Citation Format

Share Document