scholarly journals Preliminary Evaluation of Geopolymer Mix Design Applying the Design of Experiments Method

2021 ◽  
Vol 6 (3) ◽  
pp. 35
Author(s):  
Sergio Copetti Callai ◽  
Piergiorgio Tataranni ◽  
Cesare Sangiorgi

The use of waste materials in road construction is becoming widely spread due to economic and environmental needs. Construction and demolition waste materials and mining residues have been studied for a long time. However, the use of fine materials, mainly from mine tailing and mining residue, is still complex, as they can be used as inert materials into the mix or can become a reactive agent in geopolymer mixes. In the present paper, an experimental application of basalt powder is proposed in the geopolymerisation reaction to produce artificial aggregates. In order to understand the input and output variables’ interactions used in the mix design, a statistical method called Design of Experiments was applied. With this design approach, it was possible to optimize the mix design of the experimental geopolymer mortars. The study evaluated several mixes with respect to their workability, compressive strength, and success rate of aggregates production. Finally, a model for predicting compressive strength is proposed and evaluated.

2021 ◽  
Vol 882 ◽  
pp. 221-227
Author(s):  
Arpan Ray ◽  
Radhikesh Prasad Nanda ◽  
Pronab Roy

Wastes arising from construction and demolition (C & D) constitute one of the major streams in many countries. In this paper experimental investigation was carried to see the feasibility of C& D waste as road aggregates. From the grading analysis it was observed that using C& D wastes, strength criteria is being satisfied and meet the specifications of MORTH which is then subjected to aggregate impact value (AIV) testing, CBR testing etc. The CBR value of C&D waste was found to be 43.46 which were well above the permissible value. A proposed three-layer system using soil layer, C & D waste layer and asphalt concrete layer is chosen to estimate rut depth using existing analytical model. From the analytical model rut depth is predicted to be 14.77 mm which is less then maximum allowable limits. Hence C& D waste materials can be used as alternate materials in road construction with economy and sustainability.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 528
Author(s):  
Abbas Solouki ◽  
Giovanni Viscomi ◽  
Piergiorgio Tataranni ◽  
Cesare Sangiorgi

Every year, up to 3 billion tons of non-renewable natural aggregates are demanded by the construction sector and approximately 623 million tons of waste (mining and quarrying) was produced in 2018. Global efforts have been made to reduce the number of virgin aggregates used for construction and infrastructure sectors. According to the revised waste framework directive in Europe, recycling at least 70% of construction and demolition waste materials by 2020 was obligatory for all member states. Nonetheless, quarries must work at full capacity to keep up with the demands, which has made quarry/mining waste management an important aspect during the past decades. Amongst the various recycling methods, quarry waste can be included in cement mortar mixtures. Thus, the current research focuses on producing cement mortars by partially substituting natural sand with the waste silt obtained from the limestone aggregate production in S.A.P.A.B.A. s.r.l. (Italy). A Design of Experiments (DOE) method is proposed to define the optimum mix design, aiming to include waste silt in cement mortar mixtures without affecting the final performance. Three cement mortar beams were produced and tested for each of the 49 randomized mixtures defined by the DOE method. The obtained results validate the design approach and suggest the possibility of substituting up to 20% of natural sand with waste silt in cement mortar mixtures.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Youyun Li ◽  
Hui Zhou ◽  
Linjian Su ◽  
Hang Hou ◽  
Li Dang

The recycling and reuse of waste materials is a topic of global concern and great international interest for those interested in sustainable development and protecting the environment. In recent decades, global production of construction and demolition waste (C&D waste) has significantly increased and became a worldwide problem. This research proposes to evaluate the feasibility of using aggregate from recycled C&D waste for urban road embankment applications based on the Sanhuan road construction project in eastern Xi’an. An extensive suite of laboratory and field compaction tests were carried out to determine the physical properties and engineering characteristics of the C&D waste. The effect of curing on the strength of the C&D waste was investigated using unconfined compression strength (UCS), California bearing ratio (CBR), and deflection tests. The results show that the C&D waste has the characteristics of high strength and significant stability after simple treatment and further suggest that the use of these materials for paving urban road embankments is feasible. This study is of value for the reasonable and effective promotion of using C&D waste recycled materials in road subgrade applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pritish Gupta Quedou ◽  
Eric Wirquin ◽  
Chandradeo Bokhoree

Purpose The purpose of this paper is to investigate the potential use of construction and demolition waste materials (C&DWM) as an alternative for natural fine aggregates (NFA), in view to solve the disposal problems caused due to landfills. In addition, to evaluate its suitability as a sustainable material, mechanical and durability properties have been performed on different proportions of concrete blending and the results recorded were compared with the reference concrete values. Design/methodology/approach In this research, the NFA were replaced at the proportion of 25%, 50%, 75% and 100% of C&DWM with a constant slump range of 130 mm–150 mm. This parameter will assess the consistency of the fresh concrete during transportation process. The characteristics of the end product was evaluated through various tests conducted on hardened concrete samples, namely, compressive strength, flexural strength, depth of penetration of water under pressure, rapid chloride penetration test, carbonation test and ultrasonic pulse velocity (UPV) test. All results recorded were compared with the reference concrete values. Findings The results demonstrated that the use of C&DWM in concrete portrayed prospective characteristics that could eventually change the concept of sustainable concrete. It was noted that the compressive and flexural strength decreased with the addition of C&DWM, but nevertheless, a continuous increase in strength was observed with an increase in curing period. Moreover, the increase in rapid chloride penetration and decrease in UPV over time period suggested that the concrete structure has improved in terms of compactness, thus giving rise to a less permeable concrete. The mechanical tests showed little discrepancies in the final results when compared to reference concrete. Therefore, it is opined that C&DWM can be used effectively in concrete. Originality/value This study explores the possible utilisation of C&DWM as a suitable surrogative materials in concrete in a practical perspective, where the slump parameter will be kept constant throughout the experimental process. Moreover, research on this method is very limited and is yet to be elaborated in-depth. This approach will encourage the use of C&DWM in the construction sector and in the same time minimise the disposal problems caused due to in landfills.


Construction and Demolition wastes(C&D wastes) are generated in all cities of the world due to rapid urbanization. Disposing C & D waste these days is a costly affair, and raises environmental issues. Hence an attempt is made to reuse the demolished concrete as a partial replacement of natural coarse aggregates. Also due to ban of sand mining by local authorities, the cost of natural fine aggregate is very high and itself becoming a scarce material. Hence crushed stone aggregates called manufactured sand (m sand) is used, totally replacing natural fine aggregates. This concept is found to be cost effective, minimizes disposal of C & D wastes, and leads towards Green Building Concepts. Compression test on M40 concrete cubes of size 150mmx150mmx150mm are conducted at end of 7 days and 28days. Mix design for M40 concrete is made in accordance to IS: 10262-2019 with water cement ratio of 0.45 using 53 Grade Ordinary Portland cement. Superplasticizer (LIQUIFIX) is used to enhance workability. Nano Silica (NS)(1.5% by weight of cement),Wollastonite powder(WP)(10%by weight of cement) and Basalt fibres(BF)(1% by weight of cement) are added as additives. It is observed, that compressive strength of 7 days and 28 days cured samples is 25% more with the addition of all three additives compared to samples without additives. Hence the loss of compressive strength obtained by using demolished concrete as aggregates and m sand in concrete is regained with the addition of additives.


2015 ◽  
Vol 5 (2) ◽  
pp. 81-86
Author(s):  
Irina Smical ◽  
F. Filip-Văcărescu ◽  
G. Danku ◽  
V. Paşca

Abstract The recycling issues related to the construction and demolition (C&D) wastes in the sustainable development and the circular economy context represent a continuous challenge for researchers. This paper reveals the possibility to recycle the hardened mortar recovered from C&D wastes. Thus, the recovered hardened mortar with grains size less than 16 mm was used in the concrete structure. The compression resistance of the final concrete was determined using a Heckert 3000 KN testing machine and the results showed a better compressive strength for the samples with C&D waste content than the standard sample of about 1.19 times. This is a good premise for improving the researches related to C&D waste usage in concrete production.


Sign in / Sign up

Export Citation Format

Share Document