scholarly journals Characterization of the Cap ‘n’ Collar Isoform C gene in Spodoptera frugiperda and its Association with Superoxide Dismutase

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 221 ◽  
Author(s):  
Yiou Pan ◽  
Xiaochun Zeng ◽  
Shuyuan Wen ◽  
Xuemei Liu ◽  
Qingli Shang

Nuclear factor erythroid 2 related factor 2 (Nrf2) belongs to the cap ‘n’ collar basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants, and chemo-preventive agents. Transcriptional regulation of a battery of detoxifying and antioxidant genes by Nrf2 has been shown to be important for protection against oxidative stress or chemically-induced cellular damages. In our research, we cloned the full length CncC gene from the Spodoptera frugiperda, named as SfCncC. The cDNA of the SfCncC consists of 2652 nucleotides that include a 2196-nucleotide open reading frame (ORF), encoding 731 amino acid residues, and 239- and 217-bp non-coding regions flanking at the 5’- and 3’-ends of the cDNA, respectively. Sequence analysis indicated SfCncC has the conserved domain (CNC-bZIP domain and a tetrapeptide motif, ETGE) character of Nrf2 and showed high identity compared with the CncC/Nrf2 from other insect and vertebrate species. Over-expression of SfCncC can up-regulate the transcription and activity of the SOD gene in Sf9 cells, and the RNAi of SfCncC in Sf9 cells and larvae of S. frugiperda can dramatically reduce the transcriptional level and activity of the SOD gene, as determined by real-time quantitative PCRs. So the SfCncC is involved in the Keap1-Nrf2-ARE pathway, acting the same as the transcriptional factor Nrf2 in vertebrate, and plays a role for host cell defense. The functional characterization of SfCncC provides the fundamental basis for us to further understand the regulatory mechanism of anti-oxidants and anti-xenobiotics in S. frugiperda.

2018 ◽  
Vol 48 (11) ◽  
pp. 1279-1291
Author(s):  
Yajie Xue ◽  
Zaibao Zhang ◽  
Lei Wang ◽  
Yajun Yu ◽  
Jinbin Xiao ◽  
...  

Basic leucine zipper (bZIP) transcription factor (TF) genes regulate numerous biological processes, as well as biotic and abiotic responses. Although the genome of the tea tree (Camellia sinensis (L.) Kuntze) has been released, knowledge regarding the bZIP TF family in C. sinensis, e.g., phylogenetic relationship and transcriptional gene expression profiles, remains limited. In this study, we characterized 77 bZIP genes in C. sinensis based on transcriptomic and genomic data and divided them into 11 groups according to their phylogenetic relationship with those in Arabidopsis, which allowed us to identify 14 pairs of orthologous proteins shared by Arabidopsis and C. sinensis and 19 pairs of paralogous proteins in C. sinensis. Conserved motif analysis of CsbZIP proteins showed high group specificity. Our classification was supported by the predicted specificities based on DNA-binding domains, as well as the dimerization property based on characteristic features in the basic and hinge regions and the leucine zipper. Specifically, they indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. Expression profiling analyses indicate that the CsbZIP genes are likely involved in response to trauma, and a model was established to display the unique expression of each group during different time intervals after wounding. This work provides useful clues for further functional characterization of the CsbZIP TFs.


2005 ◽  
Vol 202 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Tirumalai Rangasamy ◽  
Jia Guo ◽  
Wayne A. Mitzner ◽  
Jessica Roman ◽  
Anju Singh ◽  
...  

Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma.


Author(s):  
Qiuyuan Zhang ◽  
Yicheng Zhou ◽  
Yunfei Li ◽  
Bahar Ali ◽  
Zhihui Zhu

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Bai ◽  
Emmanuel Caussinus ◽  
Stefano Leo ◽  
Fritz Bosshardt ◽  
Faina Myachina ◽  
...  

Abstract Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range.


2019 ◽  
Vol 20 (24) ◽  
pp. 6334 ◽  
Author(s):  
Lianxue Fan ◽  
Liang Xu ◽  
Yan Wang ◽  
Mingjia Tang ◽  
Liwang Liu

Basic leucine zipper (bZIP) transcription factors play crucial roles in various abiotic stress responses as well as anthocyanin accumulation. Anthocyanins are most abundant in colorful skin radish, which exhibit strong antioxidant activity that offers benefits for human health. Here, a total of 135 bZIP-encoding genes were identified from radish genome. Synteny analysis showed that 104 radish and 63 Arabidopsis bZIP genes were orthologous. Transcriptome analysis revealed that 10 RsbZIP genes exhibited high-expression levels in radish taproot (RPKM>10). Specifically, RsbZIP010 exhibited down-regulated expression under Cd, Cr and Pb stresses, whereas RsbZIP031 and RsbZIP059 showed significant down-regulation under heat and salt stresses, respectively. RT-qPCR analysis indicated that RsbZIP011 and RsbZIP102 were significantly up-regulated in the tissues of radish with high anthocyanin contents. Furthermore, the promoter sequences of 39 anthocyanin-related genes were found to contain G-box or ACE-box elements that could be recognized by bZIP family members. Taken together, several RsbZIPs might be served as critical regulators in radish taproot under Cd, Cr, Pb, heat and salt stresses. RsbZIP011 and RsbZIP102 were the potential participants in anthocyanin biosynthesis pathway of radish. These results facilitate further investigation on functional characterization of bZIP genes in response to abiotic stress and anthocyanin biosynthesis in radish.


Biochemistry ◽  
2012 ◽  
Vol 51 (9) ◽  
pp. 1874-1884 ◽  
Author(s):  
Andrew P. Herbert ◽  
David Kavanagh ◽  
Conny Johansson ◽  
Hugh P. Morgan ◽  
Bärbel S. Blaum ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 311 ◽  
Author(s):  
Tengfei Liu ◽  
Tingting Zhou ◽  
Meiting Lian ◽  
Tiantian Liu ◽  
Juan Hou ◽  
...  

Abscisic acid (ABA) plays crucial roles in plant development and adaption to environmental stresses. The ABA-responsive element binding protein/ABRE-binding factor and ABA INSENSITIVE 5 (AREB/ABF/ABI5) gene subfamily members, which belong to the basic domain/leucine zipper (bZIP) transcription factors family, participate in the ABA-mediated signaling pathway by regulating the expression of their target genes. However, information about potato (Solanum tuberosum) AREB/ABF/ABI5 subfamily members remains scarce. Here, seven putative AREB/ABF/ABI5 members were identified in the potato genome. Sequences alignment revealed that these members shared high protein sequence similarity, especially in the bZIP region, indicating that they might possess overlapping roles in regulating gene expression. Subcellular localization analysis illustrated that all seven AREB/ABF/ABI5 members were localized in the nucleus. Transactivation activity assays in yeast demonstrated that these AREB/ABF/ABI5 members possessed distinct transcriptional activity. Electrophoretic mobility shift assays (EMSA) confirmed that all of these AREB/ABF/ABI5 members could have an affinity to ABRE in vitro. The expression patterns of these AREB/ABF/ABI5 genes showed that they were in response to ABA or osmotic stresses in varying degrees. Moreover, most AREB/ABF/ABI5 genes were induced during stolon swelling. Overall, these results provide the first comprehensive identification of the potato AREB/ABF/ABI5 subfamily and would facilitate further functional characterization of these subfamily members in future work.


2004 ◽  
Vol 164 (6) ◽  
pp. 851-862 ◽  
Author(s):  
James I.S. MacDonald ◽  
Chris J. Kubu ◽  
Susan O. Meakin

We provide the first characterization of a novel signaling adapter, Nesca, in neurotrophic signal transduction. Nesca contains a RUN domain, a WW domain, a leucine zipper, a carboxyl-terminal SH3 domain, and several proline-rich regions. Nesca is highly expressed in the brain, is serine phosphorylated, and mobilizes from the cytoplasm to the nuclear membrane in response to neurotrophin, but not epidermal growth factor, stimulation in a MEK-dependent process. Overexpression studies in PC12 cells indicate that Nesca facilitates neurotrophin-dependent neurite outgrowth at nonsaturating doses of nerve growth factor (NGF). Similarly, short interfering RNA studies significantly reduce NGF-dependent neuritogenesis in PC12 cells. Mutational analyses demonstrate that the RUN domain is an important structural determinant for the nuclear translocation of Nesca and that the nuclear redistribution of Nesca is essential to its neurite outgrowth-promoting properties. Collectively, these works provide the first functional characterization of Nesca in the context of neurotrophin signaling and suggest that Nesca serves a novel, nuclear-dependent role in neurotrophin-dependent neurite outgrowth.


Sign in / Sign up

Export Citation Format

Share Document