scholarly journals Characterization of Two Complete Mitochondrial Genomes of Ledrinae (Hemiptera: Cicadellidae) and Phylogenetic Analysis

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 609 ◽  
Author(s):  
Weijian Huang ◽  
Yalin Zhang

Mitochondrial genomes are widely used for investigations into phylogeny, phylogeography, and population genetics. More than 70 mitogenomes have been sequenced for the diverse hemipteran superfamily Membracoidea, but only one partial and two complete mtgenomes mitochondrial genomes have been sequenced for the included subfamily Ledrinae. Here, the complete mitochondrial genomes (mitogenomes) of two additional Ledrinae species are newly sequenced and comparatively analyzed. Results show both mitogenomes are circular, double-stranded molecules, with lengths of 14,927 bp (Tituria sagittata) and 14,918 bp (Petalocephala chlorophana). The gene order of these two newly sequenced Ledrinae is highly conserved and typical of members of Membracoidea. Similar tandem repeats in the control region were discovered in Ledrinae. Among 13 protein-coding genes (PCGs) of reported Ledrinae mitogenomes, analyses of the sliding window, nucleotide diversity, and nonsynonymous substitution (Ka)/synonymous substitution (Ks) indicate atp8 is a comparatively fast-evolving gene, while cox1 is the slowest. Phylogenetic relationships were also reconstructed for the superfamily Membracoidea based on expanded sampling and gene data from GenBank. This study shows that all subfamilies (sensu lato) are recovered as monophyletic. In agreement with previous studies, these results indicate that leafhoppers (Cicadellidae) are paraphyletic with respect to the two recognized families of treehoppers (Aetalionidae and Membracidae). Relationships within Ledrinae were recovered as (Ledra + (Petalocephala + Tituria)).

ZooKeys ◽  
2021 ◽  
Vol 1037 ◽  
pp. 137-159
Author(s):  
Xiaoxiao Chen ◽  
Can Li ◽  
Yuehua Song

The number and classification of tribes in the leafhopper subfamily Typhlocybinae are not yet fully clear, and molecular data has recently been used to help resolve the problem. In this study, the mitochondrial genomes of Mitjaevia shibingensis Chen, Song & Webb, 2020 and M. dworakowskae Chen, Song & Webb, 2020 of the tribe Erythroneurini (Cicadellidae, Typhlocybinae) were sequenced. Most protein-coding genes (PCGs) start with ATN and end with TAA or TAG, and the AT content of these three codons were found differ from previous results that show that the first codon has the highest incidence. Two rRNA genes are highly conserved, and the AT content in 16S is higher than that of 12S. The nucleotide diversity and genetic distance among 13 PCGs of the four tribes from Typhlocybinae show that Empoascini nucleotide diversity is significantly less than in the other three tribes, and have the largest distance from the others, while Typhlocybini and Zyginellini have the smallest distance, indicating that the relationship between the two is the closest. The nad2, nad4, nad4L, and nad5 genes have greater nucleotide diversity, showing potential for use as the main markers for species identification. The phylogenetic analysis yielded a well-supported topology with most branches receiving maximum support and a few branches pertaining to relationships within Zyginellini and Typhlocybini receiving lower support. The species of these two tribes are intertwined, and it was impossible to resolve them into separate branches. In addition, the tribes Empoascini and Erythroneurini were recovered as monophyletic, and Alebrini was placed at the base of the tree as the most primitive. These results are broadly in line with other molecular phylogenetical studies which differ from traditional morphological classification.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12465
Author(s):  
Nian Gong ◽  
Lin Yang ◽  
Xiangsheng Chen

Here, the complete mitochondrial genomes (mitogenomes) of 12 Caliscelidae species, Augilina tetraina, Augilina triaina, Symplana brevistrata, Symplana lii, Neosymplana vittatum, Pseudosymplanella nigrifasciata, Symplanella brevicephala, Symplanella unipuncta, Augilodes binghami, Cylindratus longicephalus, Caliscelis shandongensis, and Peltonotellus sp., were determined and comparatively analyzed. The genomes varied from 15,424 to 16,746 bp in size, comprising 37 mitochondrial genes and an A+T-rich region. The typical gene content and arrangement were similar to those of most Fulgoroidea species. The nucleotide compositions of the mitogenomes were biased toward A/T. All protein-coding genes (PCGs) started with a canonical ATN or GTG codon and ended with TAN or an incomplete stop codon, single T. Among 13 PCGs in 16 reported Caliscelidae mitogenomes, cox1 and atp8 showed the lowest and highest nucleotide diversity, respectively. All PCGs evolved under purifying selection, with atp8 considered a comparatively fast-evolving gene. Phylogenetic relationships were reconstructed based on 13 PCGs in 16 Caliscelidae species and five outgroups using maximum likelihood and Bayesian inference analyses. All species of Caliscelidae formed a steadily monophyletic group with high support. Peltonotellini was present at the basal position of the phylogenetic tree. Augilini was the sister group to Caliscelini and Peltonotellini.


2020 ◽  
Author(s):  
Yuan Hua ◽  
Ning Li ◽  
Jie Chen ◽  
Bao-Zhen Hua ◽  
Shi-Heng Tao

Abstract Background: Mitochondrial genomes play a significant role in reconstructing phylogenetic relationships and revealing molecular evolution in insects. However, only two species of Panorpidae have been documented for mitochondrial genomes in Mecoptera to date.Results: We obtained complete mitochondrial genomes of 17 species of Panorpidae. The results show that the complete mitogenome sequences of Panorpidae all contain 37 genes (13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs) and one control region. The mitogenomes exhibit a strong AT bias. The AT-skew can either be slightly positive or slightly negative, while the GC-skew is usually negative. The 22 tRNA genes can fold into a common cloverleaf secondary structure except trnS1. The sliding window and genetic distance analyses demonstrate highly variable nucleotide diversity among the 13 protein-coding genes, with comparatively low evolutionary rate of cox1, cox2 and nad1, and high variability of nad2 and nad6. The phylogeny of Panorpidae can be presented as (Neopanorpa + Furcatopanorpa) + (Dicerapanorpa + (Panorpa debilis + (Sinopanorpa + (Cerapanorpa + Panorpa)))).Conclusions: Our analyses indicate that the genes nad2 and nad6 can be regarded as potential markers for population genetics and species delimitation in Panorpidae. Panorpa is reconfirmed a paraphyletic group.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 338
Author(s):  
Yan Jiang ◽  
Hao-Xi Li ◽  
Xiao-Fei Yu ◽  
Mao-Fa Yang

The complete mitochondrial genomes of Atkinsoniella grahami and Atkinsoniella xanthonota were sequenced. The results showed that the mitogenomes of these two species are 15,621 and 15,895 bp in length, with A+T contents of 78.6% and 78.4%, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (CR). For all PCGs, a standard start ATN codon (ATT, ATG, or ATA) was found at the initiation site, except for ATP8, for which translation is initiated with a TTG codon. All PCGs terminate with a complete TAA or TAG stop codon, except for COX2, which terminates with an incomplete stop codon T. All tRNAs have the typical cloverleaf secondary structure, except for trnS, which has a reduced dihydrouridine arm. Furthermore, these phylogenetic analyses were reconstructed based on 13 PCGs and two rRNA genes of 73 mitochondrial genome sequences, with both the maximum likelihood (ML) and Bayesian inference (BI) methods. The obtained mitogenome sequences in this study will promote research into the classification, population genetics, and evolution of Cicadellinae insects in the future.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 869
Author(s):  
Jiu Tang ◽  
Weijian Huang ◽  
Yalin Zhang

To reveal mtgenome characterizations and reconstruct phylogenetic relationships of Hylicinae, the complete mtgenomes of four hylicine species, including Nacolus tuberculatus, Hylica paradoxa, Balala fujiana, and Kalasha nativa, were sequenced and comparatively analyzed for the first time. We also carried out the richest (11) subfamily sampling of Cicadellidae to date, and reconstructed phylogenetic relationships of Membracoidea among 61 species based on three datasets using maximum likelihood and Bayesian inference analyses. All new sequenced mtgenomes are molecules ranging from 14,918 to 16,221 bp in length and are double stranded, circular in shape. The gene composition and arrangement of these mtgenomes are consistent with members of Membracoidea. Among 13 protein-coding genes, most show typical ATN start codons and TAR (TAA/TAG) or an incomplete stop codon T–, and several genes start by TTG/GTG. Results of the analysis for sliding window, nucleotide diversity, and nonsynonymous substitution/synonymous substitution indicate cox1 is a comparatively slower-evolving gene while atp8 is the fastest gene. In line with previous researches, phylogenetic results indicate that treehopper families are paraphyletic with respect to family Cicadellidae and also support the monophyly of all involved subfamilies including Hylicinae. Relationships among the four hylicine genera were recovered as (Hylica + (Nacolus + (Balala + Kalasha))).


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


Author(s):  
Solomon T C Chak ◽  
Juan Antonio Baeza ◽  
Phillip Barden

Abstract Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm—lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits—extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.


2020 ◽  
Vol 21 (5) ◽  
pp. 1874 ◽  
Author(s):  
Huiting Ruan ◽  
Min Li ◽  
Zhenhai Li ◽  
Jiajie Huang ◽  
Weiyuan Chen ◽  
...  

Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.


Sign in / Sign up

Export Citation Format

Share Document