scholarly journals RNA Interference-Based Silencing of the Chitin Synthase 1 Gene for Reproductive and Developmental Disruptions in Panonychus citri

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 786
Author(s):  
Muhammad Waqar Ali ◽  
Muhammad Musa Khan ◽  
Fang Song ◽  
Liming Wu ◽  
Ligang He ◽  
...  

Chitin synthase 1 (CHS1) is an essential gene regulating chitin during different developmental stages of arthropods. In the current study, we explored for the first time the role of CHS1 gene regulation in the citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), by silencing its expression using (RNA interference) RNAi-based strategies. The results reveal that P. citri tested in different developmental stages, including larvae, protonymphs, deutonymphs, and adults fed on sweet orange leaves dipped in various concentrations (200, 400, 600, and 800 ng/μL) of dsRNA-PcCHS1, resulted in a continuous reduction in their gene expression, and the extent of transcript knockdown was positively correlated with the concentration of dsRNA. Concentration–mortality response assays revealed a mortality of more than 50% among all the studied developmental stages, except for adulthood. Furthermore, the target gene dsRNA-PcCHS1 treatment of larvae, protonymphs, deutonymphs, and females at a treatment rate of 800 ng/mL of dsRNA significantly decreased the egg-laying rates by 48.50%, 43.79%, 54%, and 39%, respectively, and the hatching rates were also considerably reduced by 64.70%, 70%, 64%, and 52.90%, respectively. Moreover, using the leaf dip method, we found that the RNA interference effectively reduced the PcCHS1 transcript levels by 42.50% and 42.06% in the eggs and adults, respectively. The results of this study demonstrate that the RNAi of PcCHS1 can dramatically reduce the survival and fecundity of P. citri, but the dsRNA concentrations and developmental stages can significantly influence the RNAi effects. These findings indicate the potential utility of the PcCHS1 gene in causing developmental irregularities, which could aid in the development of effective and novel RNAi-based strategies for controlling P. citri.

2018 ◽  
Vol 66 (5) ◽  
pp. 379 ◽  
Author(s):  
Igor Ballego-Campos ◽  
Elder Antônio Sousa Paiva

Colleters are common among eudicotyledons, but few records exist for monocotyledons and other groups of plants. For Bromeliaceae, mucilage secretions that protect the young portions of the plant have been observed only in the reproductive axis, and little is known about the secretory systems behind this or even other kind of secretions in the family. We aimed to describe, for the first time, the occurrence of colleters associated with the vegetative shoot of Aechmea blanchetiana (Baker) L.B.Sm., and elucidate aspects of their structure, ultrastructure and secretory activity. Samples of various portions of the stem axis were prepared according to standard methods for light and electron microscopy. Colleters were found compressed in the axillary portion of leaves and in all leaf developmental stages. Secretory activity, however, was found to be restricted to young and unexpanded leaves. The colleters displayed a flattened hand-like shape formed by a multiseriate stalk and an expanded secretory portion bearing elongated marginal cells. Ultrastructural data confirmed that the secretory role of the colleters is consistent with mucilaginous secretion. The functional roles of the colleters are discussed with regard to environmental context and intrinsic features of the plant, such as the presence of a water-impounding tank.


2014 ◽  
Vol 54 (3) ◽  
pp. 242-249
Author(s):  
Magdalena Lubiarz ◽  
Elżbieta Cichocka

Abstract No detailed studies have been conducted in Poland with regard to aphid eggs or egg survival in particular. So far, no studies have been conducted concerning the role of ladybird beetles in reducing the number of aphid eggs in spring, before the development of leaves, and in autumn, after the leaves have been shed. At these times, other developmental stages of aphids are unavailable as food for the ladybirds. The paper presents the preliminary results of a three-year study on the process of aphid egg-laying (especially Chaetosiphon tetrarhodum, Macrosiphum rosae, Metopolophium dirhodum, and Maculolachnus submacula). The paper also deals with the little known role of ladybirds in aphid egg destruction. Research was conducted in Otrębusy (Western Mazovia), Poland, in the years 2008-2010, on the rugosa rose and on the dog rose. In the years 2011-2013, in Otrębusy, the occurrence of M. submacula was also observed on the ornamental grandiflora rose. Furthermore, in the years 2003-2004, observations were conducted on the pedunculate oak in Polesie National Park and in the town of Puławy (Lublin Region), Poland. The observations which took place in Puławy focused on egglaying of aphids representing the genera Phylloxera and Lachnus. The study investigated aphid oviposition sites. Data was collected on the number of aphid eggs noted on the studied plants. The study also showed, that sometimes winter eggs of aphids could provide nutrition for ladybirds. This was especially true in autumn when ladybird beetles were preparing for hibernation.


2014 ◽  
Vol 15 (3) ◽  
pp. 3711-3728 ◽  
Author(s):  
Wen-Kai Xia ◽  
Tian-Bo Ding ◽  
Jin-Zhi Niu ◽  
Chong-Yu Liao ◽  
Rui Zhong ◽  
...  

2013 ◽  
Vol 23 (2) ◽  
pp. 216-229 ◽  
Author(s):  
B. Liu ◽  
W. Dou ◽  
T-B. Ding ◽  
R. Zhong ◽  
C-Y. Liao ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Chong-Yu Liao ◽  
Ying-Cai Feng ◽  
Gang Li ◽  
Xiao-Min Shen ◽  
Shi-Huo Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Reza Kalhori ◽  
Fatemeh Saadatpour ◽  
Ehsan Arefian ◽  
Masoud Soleimani ◽  
Mohammad Hosien Farzaei ◽  
...  

The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease’s main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus’s genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus’s structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.


2003 ◽  
Vol 77 (8) ◽  
pp. 4481-4488 ◽  
Author(s):  
John C. Means ◽  
Israel Muro ◽  
Rollie J. Clem

ABSTRACT The Op-iap3 gene from the baculovirus Orgyia pseudotsugata M nucleopolyhedrovirus (OpMNPV) inhibits apoptosis induced by a mutant of Autographa californica MNPV (AcMNPV) that lacks the antiapoptotic gene p35, as well as apoptosis induced by a wide range of other stimuli in both mammalian and insect cells. However, the role of Op-iap3 during OpMNPV infection has not been previously examined. To determine the function of the Op-IAP3 protein during OpMNPV infection, we used RNA interference (RNAi) to silence Op-iap3 expression during OpMNPV infection of Ld652Y cells. Infected cells treated with Op-iap3 double-stranded RNA (dsRNA) did not accumulate detectable Op-iap3 mRNA, confirming that the Op-iap3 gene was effectively silenced. Op-IAP3 protein was found to be a component of the budded virion; however, in OpMNPV-infected cells treated with Op-iap3 dsRNA, the Op-IAP3 protein that was introduced by the inoculum virus decreased to almost undetectable levels by 12 h after dsRNA addition. Apoptosis was observed in infected cells treated with Op-iap3 dsRNA beginning at 12 h, and by 48 h, almost all of the cells had undergone apoptosis. These results show for the first time that Op-IAP3 is necessary to prevent apoptosis during OpMNPV infection. In addition, our results demonstrate that the RNAi technique can be an effective tool for studying baculovirus gene function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas Imhof ◽  
Yüksel Korkmaz ◽  
Manuel Koch ◽  
Gerhard Sengle ◽  
Alvise Schiavinato

Abstract Odontoblasts and pulp stroma cells are embedded within supramolecular networks of extracellular matrix (ECM). Fibrillin microfibrils and associated proteins are crucial constituents of these networks, serving as contextual scaffolds to regulate tissue development and homeostasis by providing both structural and mechanical properties and sequestering growth factors of the TGF-β superfamily. EMILIN-1, -2, and -3 are microfibril-associated glycoproteins known to modulate cell behaviour, growth factor activity, and ECM assembly. So far their expression in the various cells of the dentin-pulp complex during development, in the adult stage, and during inflammation has not been investigated. Confocal immunofluorescence microscopy and western blot analysis of developing and adult mouse molars and incisors revealed an abundant presence of EMILINs in the entire dental papilla, at early developmental stages. Later in development the signal intensity for EMILIN-3 decreases, while EMILIN-1 and -2 staining appears to increase in the pre-dentin and in the ECM surrounding odontoblasts. Our data also demonstrate new specific interactions of EMILINs with fibulins in the dentin enamel junction. Interestingly, in dentin caries lesions the signal for EMILIN-3 was significantly increased in inflamed odontoblasts. Overall our findings point for the first time to a role of EMILINs in dentinogenesis, pulp biology, and inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lotty Birnberg ◽  
Eric Climent-Sanz ◽  
Francisco M. Codoñer ◽  
Núria Busquets

The potential use of bacteria for developing novel vector control approaches has awakened new interests in the study of the microbiota associated with vector species. To set a baseline for future malaria research, a high-throughput sequencing of the bacterial 16S ribosomal gene V3-V4 region was used to profile the microbiota associated with late-instar larvae, newly emerged females, and wild-caught females of a sylvan Anopheles atroparvus population from a former malaria transmission area of Spain. Field-acquired microbiota was then assessed in non-blood-fed laboratory-reared females from the second, sixth, and 10th generations. Diversity analyses revealed that bacterial communities varied and clustered differently according to origin with sylvan larvae and newly emerged females distributing closer to laboratory-reared females than to their field counterparts. Inter-sample variation was mostly observed throughout the different developmental stages in the sylvan population. Larvae harbored the most diverse bacterial communities; wild-caught females, the poorest. In the transition from the sylvan environment to the first time point of laboratory breeding, a significant increase in diversity was observed, although this did decline under laboratory conditions. Despite diversity differences between wild-caught and laboratory-reared females, a substantial fraction of the bacterial communities was transferred through transstadial transmission and these persisted over 10 laboratory generations. Differentially abundant bacteria were mostly identified between breeding water and late-instar larvae, and in the transition from wild-caught to laboratory-reared females from the second generation. Our findings confirmed the key role of the breeding environment in shaping the microbiota of An. atroparvus. Gram-negative bacteria governed the microbiota of An. atroparvus with the prevalence of proteobacteria. Pantoea, Thorsellia, Serratia, Asaia, and Pseudomonas dominating the microbiota associated with wild-caught females, with the latter two governing the communities of laboratory-reared females. A core microbiota was identified with Pseudomonas and Serratia being the most abundant core genera shared by all sylvan and laboratory specimens. Overall, understanding the microbiota composition of An. atroparvus and how this varies throughout the mosquito life cycle and laboratory colonization paves the way when selecting potential bacterial candidates for use in microbiota-based intervention strategies against mosquito vectors, thereby improving our knowledge of laboratory-reared An. atroparvus mosquitoes for research purposes.


2021 ◽  
Vol 44 ◽  
pp. 141-151
Author(s):  
Evgeny S. Koshkin

A thorough description and detailed photographs of all developmental stages of one of the rarest Palaearctic moths, Menetries’ tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae), are presented. Eggs were obtained from a female collected in the Bureinsky Nature Reserve, Khabarovsk Krai, Russia. Data relating to specimens from this region significantly supplements previously published data, which was derived exclusively from more westerly parts of the species’ range. Larvae were reared mainly on dandelion (Taraxacum campylodes G.E.Haglund) in laboratory conditions. Some larvae were fed on Aconitum consanguineum Vorosch. leaves and larch (Larix gmelinii (Rupr.) Kuzen.) needles during certain periods of their lives. It is hypothesized that toxic compounds found in these plants resulted in high mortality rates among larvae prior to pupation. Metamorphosis anomalies in the form of larva-pupa intermediates and various morphological defects of pupae are documented for A. menetriesii for the first time. The assumptions of some researchers about the important role of Larix and Aconitum in larval development are questioned.


Sign in / Sign up

Export Citation Format

Share Document