scholarly journals Arthropods as the Engine of Nutrient Cycling in Arid Ecosystems

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 726
Author(s):  
Nevo Sagi ◽  
Dror Hawlena

Nutrient dynamics in most terrestrial ecosystems are regulated by moisture-dependent processes. In drylands, nutrient dynamics are often weakly associated with annual precipitation, suggesting that other factors are involved. In recent years, the majority of research on this topic focused on abiotic factors. We provide an arthropod-centric framework that aims to refocus research attention back on the fundamental role that macro-arthropods may play in regulating dryland nutrient dynamics. Macro-arthropods are prevalent in drylands and include many detritivores and burrowing taxa that remain active during long dry periods. Macro-arthropods consume and process large quantities of plant detritus and transport these nutrients to the decomposer haven within their climatically buffered and nutritionally enriched burrows. Consequently, arthropods may accelerate mineralization rates and generate a vertical nutrient recycling loop (VRL) that may assist in explaining the dryland decomposition conundrum, and how desert plants receive their nutrients when the shallow soil is dry. The burrowing activity of arthropods and the transportation of subterranean soil to the surface may alter the desert microtopography and promote desalinization, reducing resource leakage and enhancing productivity and species diversity. We conclude that these fundamental roles and the arthropods’ contribution to nutrient transportation and nitrogen fixation makes them key regulators of nutrient dynamics in drylands.

2010 ◽  
Vol 22 (6) ◽  
pp. 742-748 ◽  
Author(s):  
Tancredi Caruso ◽  
Ian D. Hogg ◽  
Roberto Bargagli

AbstractBiotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e.g. predators); thus, it is often assumed that species’ distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e.g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.


1994 ◽  
Vol 72 (7) ◽  
pp. 940-945 ◽  
Author(s):  
R. Lennihan ◽  
D. M. Chapin ◽  
L. G. Dickson

Nostoc commune, a colonial cyanobacterium, has been suggested as an important contributor of nitrogen to terrestrial ecosystems in the Canadian High Arctic, yet little is known about the ecophysiology of this organism in arctic environments. This study focused on the physiological performance of macroscopic colonies of N. commune found on Devon Island, N.W.T. The objectives were to examine the influence of temperature, colony morphology, and seasonal phenology on nitrogen fixation rates and the effects of light and temperature on photosynthesis. Maximum rates of acetylene reduction in N. commune (2119 nmol C2H4∙g−1∙h−1) were higher than those previously recorded for arctic N. commune but lower than values reported for temperate poulations. Depending on the time of the growing season, the temperature optimum for acetylene reduction varied from 15 °C to greater than 20 °C. Photosynthetic temperature optima did not occur below 20–25 °C (the highest temperatures measured). Light saturation of photosynthesis was reached at low levels of irradiance (100–150 μmol∙m−2∙s−1 PPFD). Acetylene reduction rates varied strongly with colony morphology. Thin, fragile, flattened colonies had higher rates than thicker, more resilient, flattened colonies or spherical colonies. Cold post-thaw temperatures appeared to delay the recovery of maximum nitrogen fixation rates for 2–3 weeks following the onset of the growing season. Compared with two other species of cyanobacteria present on Truelove Lowland (Gloeocapsa alpina and Gleotrichia sp.), N. commune had higher rates of nitrogen fixation. Key words: Nostoc commune, cyanobacteria, High Arctic, nitrogen fixation, photosynthesis.


2021 ◽  
Vol 4 (4-5) ◽  
pp. 266-276
Author(s):  
Pratap Naikwade

Carbon sequestration is one of the most important and highly recommended measures for mitigating climate change. Soil organic carbon (SOC) has potential to sequester the largest amount of carbon (C) for the longest time period in the midst of the organic C sinks in terrestrial ecosystems of the earth. In recent years, apprehension of the role of soils as sink for carbon on a wide-ranging scale has become dynamic. From last 150 years, encroachment of trees and shrubs into grasslands and the ‘thicketization’ of savannas have been reported and is a global phenomenon. One possibly beneficial effect could be that the shrub and tree-dominated ecosystems will sequester more carbon and will be a buffer for elevated atmospheric carbon dioxide (CO2) levels. The question of what is impact of woody encroachment on soil carbon balance of an ecosystem has proved difficult to answer, and the results remain debatable. The magnitude and pattern of changes in the SOC with woody encroachment are exceedingly abstruse and varies from significant increases, to significant decreases to no net change in SOC. Impact of wood plant encroachment on carbon sequestration is discussed in this paper considering various studies with different results so it will lead to better understanding of the complex phenomenon. SOC sequestration is effective greenhouse gas mitigation strategy and a vital ecosystem service. Increasing SOC may helpful to mitigate negative effects of growing concentration of CO2 in atmosphere and may be advantageous in decelerating or reversal in global climate change rate.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 179 ◽  
Author(s):  
Ágota Horel ◽  
Györgyi Gelybó ◽  
Imre Potyó ◽  
Klára Pokovai ◽  
Zsófia Bakacsi

Research on the use of soil enhancer materials such as biochar from soil chemical perspective still provide differing results; therefore, investigations focusing on soil-biochar-plant interactions are still necessary to constrain our understanding of complex biochar effects. The present study investigated the changes in biological nitrogen fixation rates (BNF) and overall nutrient dynamics (NO3−, NH4+, total N, K2O, and P2O5) during the growth of Capsicum annuum (pepper) in pot experiments amended with biochar made of paper fiber sludge and grain husk. Four treatments were studied with 0, 0.5%, 2.5%, and 5.0% (by weight) added biochar (BC) amount to temperate silt loam soil. Peppers were planted at 2–4 leave stages and grown for the duration of 12.5 weeks. Our results showed that total nitrogen had relatively small changes in all treatments over time compared to the dynamic changes observed in the case of inorganic nutrients. NO3−-N and NH4+-N abundances presented a continuous decrease during the course of the study after an initial increase. The pepper plant facilitated the BNF rates to triple in the control soils, while plants were in the growing phase (weeks 1–6), which further increased an additional 61% by harvesting (week 12). A high amount of biochar addition suppressed potential BNF rates of the investigated soil, indicating its potentially negative effects on soil indigenous microbial communities if added in excess. We also found a plateau in plant biomass production that after reaching an optimal (2.5%) biochar amendment in the soils, and excess biochar addition did not result in significant changes in the soils’ pH to achieve better nutrient (potassium, nitrogen, phosphorous) use or crop growth.


2020 ◽  
Author(s):  
Kathrin Rousk

<p>Nitrogen (N<sub>2</sub>) fixation performed by moss-associated cyanobacteria is one of the main sources of new N in pristine, high latitude ecosystems like boreal forests and arctic tundra. Here, mosses and associated cyanobacteria can contribute more than 50% to total ecosystem N input. However, N<sub>2</sub> fixation in mosses is strongly influenced by abiotic factors, in particular moisture and temperature. Hence, climate change will significantly affect this key ecosystem process in pristine ecosystems. Here, I will present a synthesis of several field and laboratory assessments of moss-associated N<sub>2</sub> fixation in response to climate change by manipulating moisture and temperature in subarctic and arctic tundra.</p><p>Both in a long-term climate warming experiment in the arctic, and along a continental climate gradient, spanning arctic, subarctic and temperate ecosystems, increased temperatures (up to 30 °C) lead to either no effect or decreased N<sub>2</sub> fixation rates in different moss species. Yet, N<sub>2</sub> fixation rates were strongly dependent on moss-moisture, which seems to be a more important driver of N<sub>2</sub> fixation in mosses than temperature.</p><p>In another set of studies, two dominant moss species (Hylocomium splendens, Pleurozium schreberi) were collected from a steep precipitation gradient (400-1200 mm mean annual precipitation, MAP) in the Subarctic close to Abisko, Northern Sweden, and were incubated at different moisture and temperature levels in the laboratory. Nitrogen fixation, cyanobacterial abundance (via qPCR) and cyanobacterial community composition (via sequencing) on the mosses were assessed. Moisture and temperature interacted strongly to control moss-associated N<sub>2</sub> fixation rates, and the highest activity was found at the wet end of the precipitation gradient. Although cyanobacterial abundance was higher in one of the investigated mosses (H. splendens), translating into higher N<sub>2</sub> fixation rates, cyanobacterial community composition did not differ between the two moss species. Nostoc was the most common cyanobacterial genera on both mosses, and hardly any methanotrophic N<sub>2</sub> fixing bacteria were found on the mosses along the precipitation gradient. Increased temperatures lead to increased abundances of certain cyanobacterial genera (Cylindrospermum and Nostoc), while others declined in response to warming. Hence, cyanobacterial communities colonizing mosses will be dominated by a few cyanobacteria species in a warmer climate, and temperature and moisture interact strongly to affect their activity. Thus, these two major climate change factors should be considered in unison when estimating climate change effects on key ecosystem processes such as N<sub>2</sub> fixation. Further, host identity determines cyanobacterial abundance, and thereby, N<sub>2</sub> fixation rates.</p><p> </p><p> </p><p> </p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Salma Mukhtar ◽  
Samina Mehnaz ◽  
Kauser Abdulla Malik

Microbial communities associated with the rhizosphere and roots of desert halophytes play an important role in plants’ growth and development. Very limited information has been available on the microbial diversity of arid environments of Pakistan. Hence in the current study, the microbial diversity of rhizosphere and root endosphere of desert halophytes, Zygophyllum simplex, Haloxylon salicoricum, Aerva javanica, and Capparis decidua was evaluated. The rhizosphere and root endosphere samples of desert halophytes collected from the three geographic sites of Cholistan desert, Punjab, Pakistan were analyzed by using 16S rRNA based Illumina sequencing. The results showed that Proteobacteria were more abundant in the rhizospheric soils while Actinobacteria were more dominant in the root endosphere of halophytes. Bacteroidetes, Firmicutes, and Deinococcus-Thermus were identified from all rhizospheric soils and roots across the three sites, with variable percentage. Bacillus, Kocuria, Pseudomonas, Halomonas, and Flavobacterium were commonly identified from the rhizosphere and root endosphere of halophytes across all the three sites. At the genus level, microbial diversity from Haloxylon showed the greatest variations between the rhizosphere and root endosphere from the site 2. This study revealed that microbial diversity analysis can be used to study how changes in abiotic factors such as soil moisture content and salinity affect the microbial communities associated with the rhizospheric soils and root endosphere of halophytes across the three sites. This study will also help in the discovery of potential inoculants for crops growing in arid and semi-arid regions of Pakistan.


2015 ◽  
Vol 66 (12) ◽  
pp. 1290 ◽  
Author(s):  
Xiao Sun ◽  
Andrea Rosanoff ◽  
Chunjiang Liu

Potassium (K), calcium (Ca) and magnesium (Mg) are three macro-elements essential for plants and animals. The ratios K : Mg or K :  (Ca + Mg) are viewed as indices of physiological status in livestock animals. In plants, Ca, Mg and K concentrations can vary with climate in terrestrial ecosystems. Here, with a widespread tree species (Chinese cork oak, Quercus variabilis Blume) and an acorn predator (the weevil Curculio davidi Fairmaire), we investigate how K, Ca and Mg vary in soils, plant tissues (leaves and acorns) and a consumer (herbivore insects) with climatic variables induced by latitude (LAT) across the temperate–subtropical areas of eastern China. Concentrations of K, Ca and Mg in soils, leaves, acorns and weevil larvae showed different degrees of variation across the study area, but only Mg concentration increased significantly with rising LAT across all four trophic levels, albeit with varying slopes. With rising mean annual temperature (MAT) and precipitation (MAP), soil Ca significantly decreased, as did leaf and acorn K concentrations, whereas all four tropic levels showed significant decreases in Mg content with both MAT and MAP (P < 0.05–0.001). Leaf and acorn Ca : Mg showed significant relationships with LAT and MAT (P < 0.05–0.01). The K : (Mg + Ca) ratio in soils and weevil larvae increased linearly with MAP (P < 0.05), and acorn K : (Mg + Ca) ratio varied in a concave manner (P < 0.001). Our results suggest that variations of Ca, Mg and K in plant tissues and weevil larva across a study area of 20° LAT range were largely driven by climatic factors, and that Mg concentration changes in all four trophic levels with climate (and LAT) largely drive changes in soil, plant and consumer ratios between Mg, Ca and/or K. These results provide information on possible effects of climate change on nutrient dynamics in terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document