Bora Rice: Natural Polymer for Drug Delivery

2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Kalyani Pathak ◽  
Ratna Jyoti Das ◽  
Riya Saikia ◽  
Aparoop Das ◽  
Mohammad Zaki Ahmad

Natural polymers play a vital part in the formulation of pharmaceutical dosage forms due to their use as excipients. Synthetic polymers have been introduced into drug delivery recently; the usage of natural polymers in drug delivery research continues to rise. It is not surprising that applications other than its caloric value have been found for starch. Various natural sources of the polymer have been investigated for delivery systems; among them, Assam Bora rice starch seems to be a promising candidate due to its interesting properties such as being non-toxic, biocompatible, biodegradable, mucoadhesive, and non-immunogenic. Assam Bora rice, locally known as Bora Chaul, was first introduced in Assam, India, from Thailand or Myanmar by Thai-Ahom, now widely cultivated throughout the Assam. The starch obtained from Assam Bora rice is characterized by its high amylopectin content (i.e., >95%) with a branched, waxy polymer which shows physical stability and resistance towards enzymatic action. Assam Bora rice starch hydrates and swells in cold water, forming viscous colloidal dispersion or sols responsible for its bioadhesive nature. Moreover, it is degraded by colonic bacteria but remains undigested in the upper GIT. Due to the excellent adhesion and gelling capability, it is often selected as a mucoadhesive matrix in a controlled release drug delivery system. Carboxymethyl Assam Bora rice starch has also been applied for SPIONs stabilization and, further, it can effectively bind and load cationic anti-cancer drug molecule, Doxorubicin hydrochloride (DOX), via electrostatic interaction. This article provides a critical assessment of Assam Bora rice literature and shows how the rice can be used in many ways, from food additives to drug delivery systems.

Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


Author(s):  
Sally Sabra ◽  
Mona Abdelmoneem ◽  
Mahmoud Abdelwakil ◽  
Moustafa Taha Mabrouk ◽  
Doaa Anwar ◽  
...  

Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1845
Author(s):  
Narcis Anghel ◽  
Valentina Maria Dinu ◽  
Liliana Verestiuc ◽  
Irene Alexandra Spiridon

Designing composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.37 to 186.5 kPa, while the elastic modulus increased from 0.828 to 1.928 MPa. The release of ketokonazole from the polymer matrix follows a Korsmeyer–Peppas type kinetics with a Fickian diffusion. All materials tested were shown to be active against pathogenic microorganisms. The mucoadhesiveness, bioadhesiveness, mechanical resistance, release kinetic, and antimicrobial activity make these biocomposites to be candidates as potential systems for controlled drug release.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 288 ◽  
Author(s):  
Mohamed Haider ◽  
Shifaa M. Abdin ◽  
Leena Kamal ◽  
Gorka Orive

The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.


2020 ◽  
Vol 46 (3) ◽  
pp. 356-364 ◽  
Author(s):  
Alexandra-Roxana Ilie ◽  
Brendan T. Griffin ◽  
Ruzica Kolakovic ◽  
Maria Vertzoni ◽  
Martin Kuentz ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9159
Author(s):  
Yanzhen Sun ◽  
Xiaodong Jing ◽  
Xiaoli Ma ◽  
Yinglong Feng ◽  
Hao Hu

Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.


Sign in / Sign up

Export Citation Format

Share Document