scholarly journals In Vivo Imaging of Thyroid Cancer with 99mTc-TR1401 and 99mTc-TR1402: A Comparison Study in Dogs

2021 ◽  
Vol 10 (9) ◽  
pp. 1878
Author(s):  
Filippo Galli ◽  
Michela Varani ◽  
Chiara Lauri ◽  
Giuseppe Campagna ◽  
Lajos Balogh ◽  
...  

Differentiated thyroid cancer (DTC) cells may lose NIS expression and iodine uptake, but usually express TSH receptors (TSHR). Therefore, the aim of our study was to compare two radiolabeled superagonist TSH analogues for DTC imaging. These analogues (namely TR1401 and TR1402) have a higher TSHR binding affinity than recombinant human TSH (Thyrogen®). Radiolabeling was performed with technetium-99m using an indirect method via HYNIC conjugation and was followed by in vitro quality controls and binding assay on TSHR-positive cell lines (ML-1). An in vitro binding assay was also performed and compared with radiolabeled human recombinant TSH. In vivo imaging was performed in four dogs with spontaneous follicular thyroid carcinoma with solid poorly differentiated areas with 99mTc-TR1401 SPECT/CT, 99mTc-TR1402 SPECT/CT, and [18F]FDG PET/CT on different days within 2 weeks. TR1401 and TR1402 were labeled with high specific activity (8.3 ± 1.2 MBq/µg) and retention of their biological activity and structural integrity. Both agonists were able to efficiently bind TSHR receptors expressed by cell lines with dissociation constants (Kd) of 2.7 nM for 99mTc-TR1401 and 0.5 nM for 99mTc-TR1402 compared with 99mTc-Thyrogen (Kd = 8.4 nM). In tumor-targeting experiments, a focal uptake was observed in dogs with spontaneous intraglandular thyroid carcinoma, in which TSHR expression was confirmed by immunohistochemistry. 99mTc-TR1402 provided higher T/B than 99mTc-TR1401 and [18F]FDG (12.9 ± 1.3, 10.2 ± 0.7, and 3.8 ± 0.6, respectively; all p < 0.001). Given these results, 99mTc-TR1402 appears to be a useful tool for in vivo imaging of thyroid cancer.

2021 ◽  
Vol 14 (1) ◽  
pp. 38
Author(s):  
Hyo Jeong Lee ◽  
Pyeonghwa Jeong ◽  
Yeongyu Moon ◽  
Jungil Choi ◽  
Jeong Doo Heo ◽  
...  

Rearranged during transfection (RET), a receptor tyrosine kinase, is activated by glial cell line-derived neurotrophic factor family ligands. Chromosomal rearrangement or point mutations in RET are observed in patients with papillary thyroid and medullary thyroid carcinomas. Oncogenic alteration of RET results in constitutive activation of RET activity. Therefore, inhibiting RET activity has become a target in thyroid cancer therapy. Here, the anti-tumor activity of a novel RET inhibitor was characterized in medullary thyroid carcinoma cells. The indirubin derivative LDD-2633 was tested for RET kinase inhibitory activity. In vitro, LDD-2633 showed potent inhibition of RET kinase activity, with an IC50 of 4.42 nM. The growth of TT thyroid carcinoma cells harboring an RET mutation was suppressed by LDD-2633 treatment via the proliferation suppression and the induction of apoptosis. The effects of LDD-2633 on the RET signaling pathway were examined; LDD-2633 inhibited the phosphorylation of the RET protein and the downstream molecules Shc and ERK1/2. Oral administration of 20 or 40 mg/kg of LDD-2633 induced dose-dependent suppression of TT cell xenograft tumor growth. The in vivo and in vitro experimental results supported the potential use of LDD-2633 as an anticancer drug for thyroid cancers.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


2017 ◽  
Vol 58 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Chen-Tian Shen ◽  
Wei-Jun Wei ◽  
Zhong-Ling Qiu ◽  
Hong-Jun Song ◽  
Xin-Yun Zhang ◽  
...  

More aggressive thyroid cancer cells show a higher activity of glycometabolism. Targeting cancer cell metabolism has emerged as a novel approach to prevent or treat malignant tumors. Glucose metabolism regulation effect of metformin in papillary thyroid cancer was investigated in the current study. Human papillary thyroid carcinoma (PTC) cell lines BCPAP and KTC1 were used. Cell viability was detected by CCK8 assay. Glucose uptake and relative gene expression were measured in metformin (0–10 mM for 48 h)-treated cells by 18F-FDG uptake assay and western blotting analysis, respectively. MicroPET/CT imaging was performed to detect 18F-FDG uptake in vivo. After treatment with metformin at 0, 2.5, 5 and 10 mM for 48 h, the ratio of p-AMPK to total AMPK showed significant rising in a dose-dependent manner in both BCPAP and KTC1, whereas p-AKT and p-mTOR expression level were downregulated. 18F-FDG uptake reduced after metformin treatment in a dose-dependent manner, corresponding to the reduced expression level of HK2 and GLUT1 in vitro. Xenograft model of PTC using BCPAP cells was achieved successfully. MicroPET/CT imaging showed that in vivo 18F-FDG uptake decreased after treatment with metformin. Immunohistochemistry staining further confirmed the reduction of HK2 and GLUT1 expression in the tumor tissue of metformin-treated PTC xenograft model. In conclusion, metformin could reduce glucose metabolism of PTC in vitro and in vivo. Metformin, by targeting glycometabolism of cancer cells, could be a promising adjuvant therapy alternative in the treatment modality of advanced thyroid carcinoma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2567-2567
Author(s):  
Hongliang Zong ◽  
Tony Taldone ◽  
Gail J. Roboz ◽  
Gabriela Chiosis ◽  
Monica L. Guzman

Abstract HSP90 is well established in supporting tumorigenesis by stabilizing oncogenic client proteins. Given this crucial role, a number of HSP90 inhibitors have been tested in various types of cancer, including leukemia. However, clinical trials thus far revealed only a subset of AML patients benefited from the treatment. Therefore, precision medicine approaches to define parameters that predict the patients' response to HSP90 inhibitors are needed to select patients who are most likely to benefit. We have previously demonstrated that PU-H71, a novel purine scaffold HSP90 inhibitor with selectivity for a tumor-specific HSP90 and currently translating into Phase 2 clinical evaluation, is capable of ablating malignant blasts, progenitor and stem cells in AML patient samples using in vitro studies. We found that leukemia cell lines (n=18) and primary AML patient samples (n=26) with greater numbers of simultaneously activated signaling networks, including PI3K-AKT and JAK-STAT, were the most sensitive to HSP90 inhibition. Using different genetic models, our studies revealed that diverse oncogenic transformations that converge upon simultaneous hyperactivation of PI3K-AKT and JAK-STAT promote sensitivity to PU-H71. To validate the efficacy of PU-H71 in vivo, we generated AML-GFP-luciferase xenograft models using cell lines with hyperactive signalosome. Xenotransplanted mice were treated with PU-H71 one week post-engraftment. In vivo imaging indicated that MOLM-13 xenografted leukemia was rapidly and significantly reduced by PU-H71 treatment. Six doses of PU-H71 produced robust anti-leukemic activity as indicated by in vivo imaging and flow cytometric analysis of post-treatment bone marrow (no disease detected). In addition, we generated 7 AML patient-derived xenografts (PDX) cohorts with samples that displayed varied levels of activation of PI3K-AKT and JAK-STAT signaling pathways. After initial validation that status of the PI3K-AKT and JAK-STAT signaling pathways were preserved in the PDX, we initiated treatment with PU-H71 and found that, as predicted, the AML-PDX with the most hyperactive signalosome were the most sensitive to in vivo treatment to PU-H71. Importantly, samples with hyperactive PI3K-AKT and JAK-STAT signaling also demonstrated a significant reduction in LSC using secondary transplants. Taken together, we found that a hyperactive signalosome results in increased sensitivity to the HSP90 inhibitor PU-H71 in vitro and in vivo. Our study suggests that evaluation of PI3K-AKT and JAK-STAT signaling pathways may provide a means to select patients who are most likely to benefit from HSP90 inhibitory therapy. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 21 (6) ◽  
pp. 865-877 ◽  
Author(s):  
Samantha K McCarty ◽  
Motoyasu Saji ◽  
Xiaoli Zhang ◽  
Christina M Knippler ◽  
Lawrence S Kirschner ◽  
...  

Increased p21-activated kinase (PAK) signaling and expression have been identified in the invasive fronts of aggressive papillary thyroid cancers (PTCs), including those withRET/PTC, BRAFV600E, and mutantRASexpression. Functionally, thyroid cancer cell motilityin vitrois dependent on group 1 PAKs, particularly PAK1. In this study, we hypothesize that BRAF, a central kinase in PTC tumorigenesis and invasion, regulates thyroid cancer cell motility in part through PAK activation. Using three well-characterized human thyroid cancer cell lines, we demonstrated in all cell lines thatBRAFknockdown reduced PAK phosphorylation of direct downstream targets. In contrast, inhibition of MEK activity either pharmacologically or with siRNA did not reduce PAK activity, indicating MEK is dispensable for PAK activity. Inhibition of cell migration through BRAF loss is rescued by overexpression of either constitutive active MEK1 or PAK1, demonstrating that both signaling pathways are involved in BRAF-regulated cell motility. To further characterize BRAF–PAK signaling, immunofluorescence and immunoprecipitation demonstrated that both exogenously overexpressed and endogenous PAK1 and BRAF co-localize and physically interact, and that this interaction was enhanced in mitosis. Finally, we demonstrated that acute induction of BRAFV600E expressionin vivoin murine thyroid glands results in increased PAK expression and activity confirming a positive signaling relationshipin vivo. In conclusion, we have identified a signaling pathway in thyroid cancer cells which BRAF activates and physically interacts with PAK and regulates cell motility.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1094
Author(s):  
Caitlin O. Caperton ◽  
Lee Ann Jolly ◽  
Nicole Massoll ◽  
Andrew J. Bauer ◽  
Aime T. Franco

Recent developments in thyroid cancer research have been hindered by a lack of validated in vitro models, allowing for preclinical experimentation and the screening of prospective therapeutics. The goal of this work is to develop and characterize three novel follicular thyroid cancer (FTC) cell lines developed from relevant animal models. These cell lines recapitulate the genetics and histopathological features of FTC, as well as progression to a poorly differentiated state. We demonstrate that these cell lines can be used for a variety of in vitro applications and maintain the potential for in vivo transplantation into immunocompetent hosts. Further, cell lines exhibit differing degrees of dysregulated growth and invasive behavior that may help define mechanisms of pathogenesis underlying the heterogeneity present in the patient population. We believe these novel cell lines will provide powerful tools for investigating the molecular basis of thyroid cancer progression and lead to the development of more personalized diagnostic and treatment strategies.


2006 ◽  
Vol 12 (18) ◽  
pp. 5570-5577 ◽  
Author(s):  
Quang T. Luong ◽  
James O'Kelly ◽  
Glenn D. Braunstein ◽  
Jerome M. Hershman ◽  
H. Phillip Koeffler

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Marilena Celano ◽  
Valentina Maggisano ◽  
Saverio Massimo Lepore ◽  
Marialuisa Sponziello ◽  
Valeria Pecce ◽  
...  

Background. Obesity has been hypothesized to contribute to the aggressiveness of thyroid cancer through the production of abnormal levels of serum adipokines. Leptin receptor (OB-R) expression has also been documented in papillary thyroid cancer (PTC). Aim. In this translational study, we analyzed in vitro the effects of leptin on the growth and migration of thyroid cancer cells (TPC-1 and K1), the molecular mechanisms underlying leptin’s action, and the influence of prolonged leptin exposure on cell response to a protein kinase inhibitor lenvatinib. The expression levels of OB-R mRNA and protein were also investigated in vivo in a series of aggressive PTCs divided into two groups based on the presence of the BRAF mutation. Results. In TPC-1 and K1 cells, prolonged treatment with leptin (500 ng/ml for 96 h) resulted in a mild increase in the proliferation (about 20% over control only in K1 cells, p<0.05) and in the migration of both cancer cell lines. Immunoblot analysis revealed a slight increase in the phosphorylation of AKT, but no effect on β-catenin and phospho-ERK expressions. The inhibitory effects of lenvatinib on the viability of both cell lines were not influenced by the leptin treatment. OB-R transcript (in fresh tissues) and proteins (in formalin-fixed and paraffin-embedded specimens) were expressed in all PTC tissues examined, with no significant differences between BRAF-mutated and BRAF-wild-type tumors. Conclusions. These results demonstrate leptin’s role in mildly increasing the aggressive phenotype of PTC cells but without influencing the action of lenvatinib. Further studies will clarify whether it is possible to target OB-R, expressed in all aggressive PTCs, as an adjuvant treatment approach for these malignancies.


Sign in / Sign up

Export Citation Format

Share Document