scholarly journals Accuracy of Customized Prefabricated Screw-Type Immediate Provisional Restorations after Single-Implant Placement

2019 ◽  
Vol 8 (4) ◽  
pp. 490 ◽  
Author(s):  
Kyung Chul Oh ◽  
Jee-Hwan Kim ◽  
Chang-Woo Woo ◽  
Hong Seok Moon

Limited evidence is available comparing the differences between pre-operative and post-operative 3D implant positions from the viewpoint of prosthetics. We aimed to investigate the differences between preplanned positions of virtual provisional restorations and their actual positions following fully guided single-implant placement. Ten maxillary typodonts with missing right central incisors were imaged using cone-beam computed tomography, and digital impressions were obtained using an intraoral scanner. These data were imported into implant-planning software, following which the provisional restorations were designed. After data superimposition, an appropriate implant position was determined, and a computer-assisted implant surgical guide was designed for each typodont. Orders generated from the implant-planning software were imported into relevant computer-aided design software to design the custom abutments. The abutments, provisional restorations, and surgical guides were fabricated, and each restoration was cemented to the corresponding abutments, generating a screw-type immediate provisional restoration. The implants were placed using the surgical guides, and the screw-type provisional restorations were engaged to the implants. The typodonts were then rescanned using the intraoral scanner. The restorations designed at the treatment planning stage were compared with those in the post-operative scan using metrology software. The angular deviation around the central axis of the implant was measured, and the differences in the crown position were converted to root mean square (RMS) values. The post-operative provisional restorations exhibited an absolute angular deviation of 6.94 ± 5.78° and an RMS value of 85.8 ± 20.2 µm when compared with their positions in the pre-operative stage. Within the limitations of the present in vitro study, the results highlight the potential application of customized prefabricated immediate provisional restorations after single-implant placement.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 615
Author(s):  
Kyung Chul Oh ◽  
June-Sung Shim ◽  
Ji-Man Park

The present study aims to compare the accuracy of metal sleeve-free 3D-printed computer-assisted implant surgical guides (MSF group) (n = 10) with metal sleeve-incorporated 3D-printed computer-assisted implant surgical guides (MSI group) (n = 10). Implants of diameter 4.0 mm and 5.0 mm were placed in the left second premolars and bilateral first molars, respectively, using a fully guided system. Closed-form sleeves were used in teeth on the left and open-form sleeves on the right. The weight differences of the surgical guides before and after implant placement, and angular deviations before and after implant placement were measured. Weight differences were compared with Student’s t-tests and angular deviations with Mann–Whitney tests. Cross-sectional views of the insert parts were observed with a scanning electron microscope. Preoperative and postoperative weight differences between the two groups were not statistically significant (p = 0.821). In terms of angular deviations, those along the mesiodistal direction for the left second premolars were significantly lower in the MSF group (p = 0.006). However, those along the mesiodistal direction for the bilateral molars and those along the buccolingual direction for all teeth were not significantly different (p > 0.05). 3D-printed implant surgical guides without metal sleeve inserts enable accurate implant placement without exhausting the guide holes, rendering them feasible for fully guided implant placement.


2019 ◽  
Vol 9 (16) ◽  
pp. 3373 ◽  
Author(s):  
Seong-Min Kim ◽  
Keunbada Son ◽  
Duk-Yeon Kim ◽  
Kyu-Bok Lee

Compared to traditional implant surgical guides, computer-assisted implant surgical guides can be considered for positioning implants in the final prosthesis. These computer-assisted implant surgical guides can be easily fabricated with personal 3D printers after being designed with implant planning CAD software. Although the accuracy of computer-assisted implant surgical guides fabricated using personal 3D printers is an important factor in their clinical use, there is still a lack of research examining their accuracy. Therefore, this study evaluated the accuracy of computer-assisted implant surgical guides, which were designed using two implant planning CAD software programs (Deltanine and R2gate software) and fabricated with personal 3D printers using a non-radiographic method. Amongst the patients who visited Kyungpook National University Dental Hospital, one patient scheduled to undergo surgery of the left mandibular second premolar was randomly selected. Twenty partially edentulous resin study models were produced using a 3D printer. Using the Deltanine and R2gate implant planning CAD software, 10 implant surgical guides per software were designed and produced using a personal 3D printer. The implants (SIII SA (Ø 4.0, L = 10 mm), Osstem, Busan, Korea) were placed by one skilled investigator using the computer-assisted implant surgical guides. To confirm the position of the actual implant fixture, the study models with the implant fixtures were scanned with a connected scan body to extract the STL files, and then overlapped with the scanned file by connecting the scan body-implant fixture complex. As a result, the mean apical deviation of the Deltanine and R2gate software was 0.603 ± 0.19 mm and 0.609 ± 0.18 mm, while the mean angular deviation was 1.97 ± 0.84° and 1.92 ± 0.52°, respectively. There was no significant difference between the two software programs (p > 0.05). Thus, the accuracy of the personal 3D printing implant surgical guides is in the average range allowed by the dental clinician.


Author(s):  
Yu Tsung Wu ◽  
Panos Papaspyridakos ◽  
Kiho Kang ◽  
Matthew Finkelman ◽  
Yukio Kudara ◽  
...  

The aims of this study were to evaluate the effect of (i) the different surgical guide designs and (ii) implant placement location on the accuracy of fully guided implant placement in single edentulous sites using an in vitro study model. Forty-five partially edentulous models were scanned and divided into three groups: group 1, tooth-supported full-arch surgical guide; group 2, three different tooth-supported shortened surgical guides (SSGs); and group 3, tooth-supported full-arch surgical guide with a crossbar. All surgical guides were printed and used for fully guided implant placement. A total of 180 implants (60 per group) were placed, and scanbodies were positioned on all models, and postoperative surface scan files (STL) files were obtained. Superimposition of preoperative and postoperative STL files was performed, and the accuracy of implant position was evaluated. The interaction between group and implant location was statistically significant for angle, 3D offset at the base, and at the tip (p<0.001). The post-hoc tests showed a statistically significantly higher deviation for group 2 compared to group 3 for all outcomes for implants #4 (p<0.05) and #7 (p<0.05). There was also a statistically significant difference in all outcomes between groups 1 and 3 for implant #7 (p<0.05). All surgical guide designs presented satisfactory performance with clinically acceptable levels of deviation. However, SSGs presented higher accuracy for guided implant placement in a single-edentulous site, whereas a full-arch surgical guide with a crossbar presented superior outcomes when two or more guided implants were placed simultaneously.


2010 ◽  
Vol 36 (5) ◽  
pp. 345-355 ◽  
Author(s):  
Bruno R. Chrcanovic ◽  
Davidson R. Oliveira ◽  
Antônio L. Custódio

Abstract Presurgical planning is essential to achieve esthetic and functional implants. For implant planning and placement, the association of computer-aided design (CAD) and computer-aided manufacturing (CAM) techniques furnishes some advantages regarding tridimensional determination of the patient's anatomy and fabrication of both anatomic models and surgical guides. The goal of this clinical study was to determine the angular deviations between planned and placed zygomatic implants using stereolithographic surgical guides in human cadavers. A total of 16 zygomatic implants were placed, 4 in each cadaver, with the use of stereolithographic (SLA) surgical guides generated by computed tomography (CT). A new CT scan was made after implant insertion. The angle between the long axis of the planned and actual implants was calculated. The mean angular deviation of the long axis between the planned and placed implants was 8.06 ± 6.40 (mean ± SD) for the anterior-posterior view, and 11.20 ± 9.75 (mean ± SD) for the caudal-cranial view. Use of the zygomatic implant, in the context of this protocol, should probably be reevaluated because some large deviations were noted. An implant insertion guiding system is needed because this last step is carried out manually. It is recommended that the sinus slot technique should be used together with the CT-based drilling guide to enhance final results. Further research to enhance the precision of zygomatic implant placement should be undertaken.


2021 ◽  
Vol 2 ◽  
pp. 178-183
Author(s):  
Angelina Vlahova ◽  
Stefan Zlatev ◽  
Boyan Pavlov ◽  
Ivan Chenchev ◽  
Viktor Hadzhigaev

Introduction: Guided single implant placement ensures an optimal implant position, enables in-surgery immediate loading, and creates a predisposition for predictable treatment results. Aim: This article aims to present the surgical and loading protocols and assess the accuracy of two guided implant systems. Materials and methods: Ten patients missing a single molar were included. The semi-guided procedures with the two implant systems – AB Dental and Alpha Bio-Tec, were randomly assigned to each participant. The computer-assisted planning was performed with Implant Studio (3Shape, Denmark). Surgical guides and long-term, temporary, screw-retained restorations were virtually generated within the 3Shape system. Surgical appliances were printed from SG resin (Formlabs, USA), and crowns were milled from Telio CAD (Ivoclar Vivadent, Lichtenstein). Planning accuracy was evaluated based on the crown’s fit and relation to the adjacent teeth and antagonists. Results and discussion: The patients included for preliminary analysis (6 female and 4 male) were with a mean age of 33.42. The youngest was 24, and the oldest 49 years old. There were no surgical and technical complications for the period of evaluation, which ranged from 1 to 3 months. The crown’s fit was excellent in 8 cases. In two cases, minor adjustments were necessary – 1 in relation to the antagonists and 1 to the adjacent teeth. In one case, a healing screw was placed for 48 hours to facilitate adequate soft-tissue space for the Ti-base.  Conclusion: The preliminary results presented in this report suggest that the clinical and laboratory protocols used for guided implantation and immediate loading are highly efficient.


2021 ◽  
Vol 10 (3) ◽  
pp. 391
Author(s):  
Rani D’haese ◽  
Tom Vrombaut ◽  
Geert Hommez ◽  
Hugo De Bruyn ◽  
Stefan Vandeweghe

Purpose: The aim of this in vitro study is to evaluate the accuracy of implant position using mucosal supported surgical guides, produced by a desktop 3D printer. Methods: Ninety implants (Bone Level Roxolid, 4.1 mm × 10 mm, Straumann, Villerat, Switzerland) were placed in fifteen mandibular casts (Bonemodels, Castellón de la Plana, Spain). A mucosa-supported guide was designed and printed for each of the fifteen casts. After placement of the implants, the location was assessed by scanning the cast and scan bodies with an intra-oral scanner (Primescan®, Dentsply Sirona, York, PA, USA). Two comparisons were performed: one with the mucosa as a reference, and one where only the implants were aligned. Angular, coronal and apical deviations were measured. Results: The mean implant angular deviation for tissue and implant alignment were 3.25° (SD 1.69°) and 2.39° (SD 1.42°) respectively, the coronal deviation 0.82 mm (SD 0.43 mm) and 0.45 mm (SD 0.31 mm) and the apical deviation 0.99 mm (SD 0.45 mm) and 0.71 mm (SD 0.43 mm). All three variables were significantly different between the tissue and implant alignment (p < 0.001). Conclusion: Based on the results of this study, we conclude that guided implant surgery using desktop 3D printed mucosa-supported guides has a clinically acceptable level of accuracy. The resilience of the mucosa has a negative effect on the guide stability and increases the deviation in implant position.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1236
Author(s):  
Jung-Hwa Lim ◽  
Enkhjargal Bayarsaikhan ◽  
Seung-Ho Shin ◽  
Na-Eun Nam ◽  
June-Sung Shim ◽  
...  

This study evaluated the internal fit and the accuracy of the implant placement position in order to determine how the surface shape of the tooth and the offset influence the accuracy of the surgical guide. The acquired digital data were analyzed in three dimensions using 3D inspection software. The obtained results confirmed that the internal fit was better in the groove sealing (GS) group (164.45 ± 28.34 μm) than the original shape (OS) group (204.07 ± 44.60 μm) (p < 0.001), and for an offset of 100 μm (157.50 ± 17.26 μm) than for offsets of 30 μm (206.48 ± 39.12 μm) and 60 μm (188.82 ± 48.77 μm) (p < 0.001). The accuracy of implant placement was better in the GS than OS group in terms of the entry (OS, 0.229 ± 0.092 mm; GS, 0.169 ± 0.061 mm; p < 0.001), apex (OS, 0.324 ± 0.149 mm; GS, 0.230 ± 0.124 mm; p < 0.001), and depth (OS, 0.041 ± 0.027 mm; GS, 0.025 ± 0.022 mm; p < 0.001). In addition, the entries (30 μm, 0.215 ± 0.044 mm; 60 μm, 0.172 ± 0.049 mm; 100 μm, 0.119 ± 0.050 mm; p < 0.001) were only affected by the amount of offset. These findings indicate that the accuracy of a surgical guide can be improved by directly sealing the groove of the tooth before manufacturing the surgical guide or setting the offset during the design process.


Author(s):  
Arash Zarbakhsh ◽  
Ezatollah Jalalian ◽  
Nazanin Samiei ◽  
Mohammad Hossein Mahgoli ◽  
Hadi Kaseb Ghane

Objectives: Intraoral scanners have shown promising results when used as an adjunct or alternative to conventional impression techniques. This study compared the accuracy of digital impression taking using an intraoral scanner versus the conventional technique. Materials and Methods: In this in-vitro experimental study, a typodont molar tooth was prepared as the standard model and scanned by TRIOS intraoral scanner. Ten digital impressions were fabricated as such and intraoral scans were sent to the manufacturers. In the conventional method, using addition silicone impression material, a stone die was fabricated. Using a computer-aided design/computer-aided manufacturing scanner, the die was scanned, and the data were transferred to the software. After the fabrication of frameworks, the replica technique was used. The replicas’ thickness (indicative of the gap between the framework and the model and the accuracy of impression taking) was 12 points. The data were analyzed using student's t-test. Results: The mean thickness of replicas (gap between the internal surface of frameworks and the standard model) at the three points in the buccal, lingual, mesial, and distal sections in the digital impression technique was lower than that in the conventional technique (P<0.0001). In other words, the accuracy of impressions taken by the digital method was significantly higher than those taken by the conventional method. Conclusion: Intraoral digital scanner had significantly higher accuracy than the conventional method in all points. Thus, the digital method can be reliably used as an adjunct or alternative to the conventional method to increase the accuracy of impression taking.


2020 ◽  
pp. 27-30
Author(s):  
Vilma A Umanzor ◽  
Hugo H Romero ◽  
Zamir Kafati ◽  
Ana Rodriguez ◽  
Juan Guifarro ◽  
...  

This paper describes the treatment of a patient diagnosed clinically and based on cone beam computed tomography images with excessive gingival display caused by altered passive eruption Type 1B. A digitally computer designed and 3-D printed surgical guide was fabricated for crown lengthening to provide periodontal esthetics. The combination of intraoral scanners and cone-beam computerized tomography images, and use of planning software, provides a very precise representation of the real conditions of the hard and soft tissues. The design and fabrication of computer surgical guides can improve precision and predictability for surgical procedures and can be superior to conventional free-handed surgery in terms of efficiency and treatment outcomes. Surgical experience and general understanding of computer assisted systems and thorough knowledge of conventional protocols is mandatory to make routine use of these systems. To select a treatment modality, the etiology must be clearly identified and the patient has to be informed of his options for treatment which for this condition are a gingivectomy or an apically positioned flap with or without osseous reduction determined by the type of altered passive eruption.


Sign in / Sign up

Export Citation Format

Share Document