scholarly journals Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology

2020 ◽  
Vol 9 (3) ◽  
pp. 817 ◽  
Author(s):  
Bilal Msallem ◽  
Neha Sharma ◽  
Shuaishuai Cao ◽  
Florian S. Halbeisen ◽  
Hans-Florian Zeilhofer ◽  
...  

With the rapid progression of additive manufacturing and the emergence of new 3D printing technologies, accuracy assessment is mostly being performed on isosymmetric-shaped test bodies. However, the accuracy of anatomic models can vary. The dimensional accuracy of root mean square values in terms of trueness and precision of 50 mandibular replicas, printed with five common printing technologies, were evaluated. The highest trueness was found for the selective laser sintering printer (0.11 ± 0.016 mm), followed by a binder jetting printer (0.14 ± 0.02 mm), and a fused filament fabrication printer (0.16 ± 0.009 mm). However, highest precision was identified for the fused filament fabrication printer (0.05 ± 0.005 mm) whereas other printers had marginally lower values. Despite the statistically significance (p < 0.001), these differences can be considered clinically insignificant. These findings demonstrate that all 3D printing technologies create models with satisfactory dimensional accuracy for surgical use. Since satisfactory results in terms of accuracy can be reached with most technologies, the choice should be more strongly based on the printing materials, the intended use, and the overall budget. The simplest printing technology (fused filament fabrication) always scored high and thus is a reliable choice for most purposes.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


2021 ◽  
Vol 10 (21) ◽  
pp. 4894
Author(s):  
Lukas Wegmüller ◽  
Florian Halbeisen ◽  
Neha Sharma ◽  
Sebastian Kühl ◽  
Florian M. Thieringer

This study evaluates the accuracy of drill guides fabricated in medical-grade, biocompatible materials for static, computer-aided implant surgery (sCAIS). The virtually planned drill guides of ten completed patient cases were printed (n = 40) using professional (Material Jetting (MJ)) and consumer-level three-dimensional (3D) printing technologies, namely, Stereolithography (SLA), Fused Filament Fabrication (FFF), and Digital Light Processing (DLP). After printing and post-processing, the drill guides were digitized using an optical scanner. Subsequently, the drill guide’s original (reference) data and the surface scans of the digitized 3D-printed drill guide were superimposed to evaluate their incongruencies. The accuracy of the 3D-printed drill guides was calculated by determining the root mean square (RMS) values. Additionally, cast models of the planned cases were used to check that the drill guides fitted manually. The RMS (mean ± SD) values for the accuracy of 3D-printed drill guides were—MJ (0.09 ± 0.01 mm), SLA (0.12 ± 0.02 mm), FFF (0.18 ± 0.04 mm), and DLP (0.25 ± 0.05 mm). Upon a subjective assessment, all drill guides could be mounted on the cast models without hindrance. The results revealed statistically significant differences (p < 0.01) in all except the MJ- and SLA-printed drill guides. Although the measured differences in accuracy were statistically significant, the deviations were negligible from a clinical point of view. Within the limits of this study, we conclude that consumer-level 3D printers can produce surgical guides with a similar accuracy to a high-end, professional 3D printer with reduced costs.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6758
Author(s):  
Arkadiusz Kroma ◽  
Michał Mendak ◽  
Michał Jakubowicz ◽  
Bartosz Gapiński ◽  
Paweł Popielarski

The investment casting method supported with 3D-printing technology, allows the production of unit castings or prototypes with properties most similar to those of final products. Due to the complexity of the process, it is very important to control the dimensions in the initial stages of the process. This paper presents a comparison of non-contact measurement systems applied for testing of photopolymer 3D-printed injection die used in investment casting. Due to the required high quality of the surface parameters, the authors decided to use the DPP (Daylight Polymer Printing) 3D-printing technology to produce an analyzed injection die. The X-ray CT, Structured blue-light scanner and focus variation microscope measurement techniques were used to avoid any additional damages to the injection die that may arise during the measurement. The main objective of the research was to analyze the possibility of using non-contact measurement systems as a tool for analyzing the quality of the surface of a 3D-printed injection die. Dimensional accuracy analysis, form and position deviations, defect detection, and comparison with a CAD model were carried out.


2020 ◽  
Vol 1005 ◽  
pp. 150-156 ◽  
Author(s):  
John Ryan Cortez Dizon ◽  
Arnaldo D. Valino ◽  
Lucio R. Souza ◽  
Alejandro H. Espera ◽  
Qiyi Chen ◽  
...  

This paper explores the possibility of using different 3d printing methods and materials in the production of polymer molds for injection molding applications. A mold producing a cube was designed using a commercial software. Following the standard 3d printing process, injection molds which could produce a cube were printed using different 3d printing materials and 3d printing technologies. The 3d printing technologies used were Stereolithography (SLA), Polyjet and Fused Filament Fabrication (FFF). A bench-top injection molding machine was used to inject polylactic acid (PLA) in these molds. The quality of the injected parts in terms of dimensional accuracy has been investigated. In some cases, the damage mechanism of the polymer molds has also been observed.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20507-20518
Author(s):  
Petr Panuška ◽  
Zuzana Nejedlá ◽  
Jiří Smejkal ◽  
Petr Aubrecht ◽  
Michaela Liegertová ◽  
...  

A novel design of 3D printed zebrafish millifluidic system for embryonic long-term cultivation and toxicity screening has been developed. The chip unit provides 24 cultivation chambers and a selective individual embryo removal functionality.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3543
Author(s):  
Wei Zhou ◽  
Jiawei Fang ◽  
Shuwei Tang ◽  
Zhengguo Wu ◽  
Xiaoying Wang

Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.


Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2021 ◽  
pp. 50-54
Author(s):  
Nor Aiman Sukindar ◽  
Noorazizi Mohd Samsuddin ◽  
Sharifah Imihezri Bt. Syed Shaharuddin ◽  
Shafie Kamaruddin ◽  
Ahmad Zahirani Ahmad Azhar ◽  
...  

This project involves the implementation of 3D printing technology on designing and fabricating food holders in the food industry. Food holders are designed to hold the food packages in the filling line for food manufacturing industries that apply retort technology. Therefore, this study aims to implement the 3D printing technology in particular FDM to fabricate food holders for the food processing industry. The approach of using this technology is focused on giving more view on the capability of 3D printing technology, aiming at reducing the overall process fabrication cost and fabrication time. Hence, the fabrication cost and time between FDM and conventional machining methods were compared. This study revealed that Organic Gain food industry was able to reduce the cost and fabrication time for the food holder up to approximately 96.3% and 72% respectively. This project gives an insight into the ability of 3D printing technology in delivering the demands of the industry in producing parts as well as the adaptability of the technology to the industry in new product development. The project was carried out successfully and the 3D printed food holder has been tested and functions smoothly.


Sign in / Sign up

Export Citation Format

Share Document