scholarly journals The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.

2020 ◽  
Vol 9 (3) ◽  
pp. 817 ◽  
Author(s):  
Bilal Msallem ◽  
Neha Sharma ◽  
Shuaishuai Cao ◽  
Florian S. Halbeisen ◽  
Hans-Florian Zeilhofer ◽  
...  

With the rapid progression of additive manufacturing and the emergence of new 3D printing technologies, accuracy assessment is mostly being performed on isosymmetric-shaped test bodies. However, the accuracy of anatomic models can vary. The dimensional accuracy of root mean square values in terms of trueness and precision of 50 mandibular replicas, printed with five common printing technologies, were evaluated. The highest trueness was found for the selective laser sintering printer (0.11 ± 0.016 mm), followed by a binder jetting printer (0.14 ± 0.02 mm), and a fused filament fabrication printer (0.16 ± 0.009 mm). However, highest precision was identified for the fused filament fabrication printer (0.05 ± 0.005 mm) whereas other printers had marginally lower values. Despite the statistically significance (p < 0.001), these differences can be considered clinically insignificant. These findings demonstrate that all 3D printing technologies create models with satisfactory dimensional accuracy for surgical use. Since satisfactory results in terms of accuracy can be reached with most technologies, the choice should be more strongly based on the printing materials, the intended use, and the overall budget. The simplest printing technology (fused filament fabrication) always scored high and thus is a reliable choice for most purposes.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


2021 ◽  
Vol 1023 ◽  
pp. 75-81
Author(s):  
Aappo Mustakangas ◽  
Atef Hamada ◽  
Antti Järvenpää

Cost-efficient 3D-printing can create a lot of new opportunities in engineering as it enables rapid prototyping of models and functional parts. In the present study, Polylactic acid (PLA) cubic specimens with different types of infill patterns (IPs), rectilinear, grid and cuboid, were additively manufactured by Fused Filament Fabrication 3D-printing. The PLA cubes are fabricated with one perimeter and different IPs density (10, 20, and 30%). Subsequently, the compressive strengths of the PLA materials were measured in two loading directions, i.e., the layers building direction is parallel (PD) to the loading axis and perpendicular (ND) to the loading direction. An optical microscope was used to examine the deformed IPs in both loading directions. The compressive flow stress curves of the PLA cubes infilled with rectilinear and grid patterns exhibited strong fluctuations with lower compressive strengths in the loading direction along ND. The PLA with 30% grid IP revealed a superior strength of ~12 kN in the loading direction along PD. On the contrary, the same material exhibited a worst compressive strength 3 kN along ND.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


2019 ◽  
Vol 14 (1) ◽  
pp. 111-124
Author(s):  
Roberto Naboni ◽  
Anja Kunic

Overconsumption of resources is one of the greatest challenges of our century. The amount of material that is being extracted, harvested and consumed in the last decades is increasing tremendously. Building with new manufacturing technology, such as 3D Printing, is offering new perspectives in the way material is utilized sustainably within a construction. This paper describes a study on how to use Additive Manufacturing to support design logics inspired by the bone microstructure, in order to build materially efficient architecture. A process which entangles computational design methods, testing of 3D printed specimens, developments of prototypes is described. A cellular-based tectonic system with the capacity to vary and adapt to different loading conditions is presented as a viable approach to a material-efficient construction with Additive Manufacturing.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3117
Author(s):  
Krzysztof Rodzeń ◽  
Mary Josephine McIvor ◽  
Preetam K. Sharma ◽  
Jonathan G. Acheson ◽  
Alistair McIlhagger ◽  
...  

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for ‘made-to-measure’ implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3162
Author(s):  
Maria A. Morales ◽  
Alejandro Maranon ◽  
Camilo Hernandez ◽  
Alicia Porras

Natural filler-based composites are an environmentally friendly and potentially sustainable alternative to synthetic or plastic counterparts. Recycling polymers and using agro-industrial wastes are measures that help to achieve a circular economy. Thus, this work presents the development and characterization of a 3D printing filament based on recycled polypropylene and cocoa bean shells, which has not been explored yet. The obtained composites were thermally and physically characterized. In addition, the warping effect, mechanical, and morphological analyses were performed on 3D printed specimens. Thermal analysis exhibited decreased thermal stability when cacao bean shell (CBS) particles were added due to their lignocellulosic content. A reduction in both melting enthalpy and crystallinity percentage was identified. This is caused by the increase in the amorphous structures present in the hemicellulose and lignin of the CBS. Mechanical tests showed high dependence of the mechanical properties on the 3D printing raster angle. Tensile strength increased when a raster angle of 0° was used, compared to specimens printed at 90°, due to the load direction. Tensile strength and fracture strain were improved with CBS addition in specimens printed at 90°, and better bonding between adjacent layers was achieved. Electron microscope images identified particle fracture, filler-matrix debonding, and matrix breakage as the central failure mechanisms. These failure mechanisms are attributed to the poor interfacial bonding between the CBS particles and the matrix, which reduced the tensile properties of specimens printed at 0°. On the other hand, the printing process showed that cocoa bean shell particles reduced by 67% the characteristic warping effect of recycled polypropylene during 3D printing, which is advantageous for 3D printing applications of the rPP. Thereby, potential sustainable natural filler composite filaments for 3D printing applications with low density and low cost can be developed, adding value to agro-industrial and plastic wastes.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document