scholarly journals A C-Doped TiO2/Fe3O4 Nanocomposite for Photocatalytic Dye Degradation under Natural Sunlight Irradiation

2019 ◽  
Vol 3 (3) ◽  
pp. 75 ◽  
Author(s):  
Mamo Gebrezgiabher ◽  
Gebrehiwot Gebreslassie ◽  
Tesfay Gebretsadik ◽  
Gebretinsae Yeabyo ◽  
Fikre Elemo ◽  
...  

Magnetically recyclable C-doped TiO2/Fe3O4 (C-TiO2/Fe3O4) nanocomposite was successfully synthesized via a sol–gel method. The synthesized samples were characterized using SEM, energy-dispersive X-ray spectroscopy (EDS), FTIR, and UV-VIS diffuse reflectance spectroscopy (DRS) techniques. The results clearly showed that a C-TiO2/Fe3O4 nanocomposite was produced. The photocatalytic activities of the prepared pristine (TiO2), C-doped TiO2 (C-TiO2) and C-TiO2/Fe3O4 were evaluated by the photodegradation of methyl orange (MO) under natural sunlight. The effect of catalyst loading and MO concentration were studied and optimized. The C-TiO2/Fe3O4 nanocomposite exhibited an excellent photocatalytic activity (99.68%) that was higher than the TiO2 (55.41%) and C-TiO2 (70%) photocatalysts within 150 min. The magnetic nanocomposite could be easily recovered from the treated solution by applying external magnetic field. The C-TiO2/Fe3O4 composite showed excellent photocatalytic performance for four consecutive photocatalytic reactions. Thus, this work could provide a simple method for the mass production of highly photoactive and stable C-TiO2/Fe3O4 photocatalyst for environmental remediation.

2019 ◽  
Vol 72 (4) ◽  
pp. 295 ◽  
Author(s):  
Kasinathan Karthik ◽  
K. R. Sunaja Devi ◽  
Dephan Pinheiro ◽  
Sankaran Sugunan

Bismuth oxide with its unique narrow bandgap has gained significant attention in the field of photocatalysis. A new and efficient method to synthesise bismuth oxide with tuneable properties is proposed herein. A surfactant assisted modified sol–gel method is used to synthesise bismuth oxide with excellent photocatalytic activity for the degradation of Rhodamine B dye. Three different surfactants, namely polyethylene glycol-400, sodium lauryl sulfate, and cetyltrimethylammonium bromide (CTAB) have been used. The fabricated bismuth oxide nanoparticles were characterised by X-ray diffraction, IR, scanning electron microscopy, and UV-diffuse reflectance spectroscopy analysis. Evolution of both the α and β crystalline phases of bismuth oxide was observed. The bandgap of the synthesised bismuth oxides ranges from 2.03 to 2.37eV. The CTAB assisted synthesised bismuth oxide with a bandgap of 2.19eV showed the highest photocatalytic activity of 93.6% under visible light for the degradation of Rhodamine B. This bismuth oxide based catalyst opens a new avenue for efficient photocatalysis for environmental remediation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 795 ◽  
Author(s):  
Abdessalem Hamrouni ◽  
Hanen Azzouzi ◽  
Ali Rayes ◽  
Leonardo Palmisano ◽  
Riccardo Ceccato ◽  
...  

Composites comprised of Ag3PO4 and bare TiO2 (TiO2@Ag3PO4) or silver doped TiO2 (Ag@TiO2–Ag3PO4) have been synthesized by coupling sol–gel and precipitation methods. For the sake of comparison, also the bare components have been similarly prepared. All the samples have been characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), photoelectrochemical measurements, and specific surface area (SSA) analysis. The optoelectronic and structural features of the samples have been related to their photocatalytic activity for the degradation of 4–nitrophenol under solar and UV light irradiation. Coupling Ag3PO4 with silver doped TiO2 mitigates photocorrosion of the Ag3PO4 counterpart, and remarkably improves the photocatalytic activity under solar light irradiation with respect to the components, to the TiO2–Ag3PO4 sample, and to the benchmark TiO2 Evonik P25. These features open the route to future applications of this material in the field of environmental remediation.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24215-24233 ◽  
Author(s):  
M. Ikram ◽  
E. Umar ◽  
A. Raza ◽  
A. Haider ◽  
S. Naz ◽  
...  

Copper-doped TiO2 was prepared with a sol–gel chemical method.


2020 ◽  
Vol 7 (9) ◽  
pp. 200708
Author(s):  
Z. Z. Vasiljevic ◽  
M. P. Dojcinovic ◽  
J. D. Vujancevic ◽  
I. Jankovic-Castvan ◽  
M. Ognjanovic ◽  
...  

The aim of this work was to synthesize semiconducting oxide nanoparticles using a simple method with low production cost to be applied in natural sunlight for photocatalytic degradation of pollutants in waste water. Iron titanate (Fe 2 TiO 5 ) nanoparticles with an orthorhombic structure were successfully synthesized using a modified sol–gel method and calcination at 750°C. The as-prepared Fe 2 TiO 5 nanoparticles exhibited a moderate specific surface area. The mesoporous Fe 2 TiO 5 nanoparticles possessed strong absorption in the visible-light region and the band gap was estimated to be around 2.16 eV. The photocatalytic activity was evaluated by the degradation of methylene blue under natural sunlight. The effect of parameters such as the amount of catalyst, initial concentration of the dye and pH of the dye solution on the removal efficiency of methylene blue was investigated. Fe 2 TiO 5 showed high degradation efficiency in a strong alkaline medium that can be the result of the facilitated formation of OH radicals due to an increased concentration of hydroxyl ions.


RSC Advances ◽  
2017 ◽  
Vol 7 (52) ◽  
pp. 33029-33042 ◽  
Author(s):  
Supriya K. Khore ◽  
Navya Vani Tellabati ◽  
Sanjay K. Apte ◽  
Sonali D. Naik ◽  
Prashant Ojha ◽  
...  

We report selective growth of N–TiO2 1D nanorods using a green aqueous sol–gel method followed by hydrothermal treatment.


2020 ◽  
Vol 5 (3) ◽  
pp. 252-268
Author(s):  
Meriem Kouhail ◽  
El Ahmadi Zakia ◽  
Benayada Abbes

Background: The textile industrial effluents cause profound imbalances in ecosystems, when released into nature; dyes are oxidized by micro-organisms, resulting in a decrease in the dissolved oxygen, which is necessary for the aquatic life. For this reason, it is important to implement economic, efficient, and green methods ensuring both the discoloration and detoxification of water. Objective: TiO2 and ZnO nanoparticles were synthesized by sol-gel and precipitation methods, respectively. These two nanoparticles were used to compare photocatalytic degradation under UV and solar irradiation for three reactive azoic dyes (trichromatic): Reactive Bezactive Yellow (RBY), Reactive Bezactive Red (RBR), and Reactive Bezactive Blue (RBB). Methods: The structural, i.e., morphological surface properties of the synthesized photocatalysts were characterized by Fourier Transform Infrared, X-ray diffraction, UV-Visible diffuse reflectance spectroscopy, and Scanning Electron Microscopy. : X-ray diffraction shows that TiO2 has a tetragonal structure with an anatase form. The effects of some operational parameters, such as the amount of TiO2 and ZnO, initial dye concentration, dye mixtures, and pH, were examined. The progress of photodegradation reaction was monitored by UV-Visible spectroscopy for decolorization and by High-Performance Liquid Chromatography for degradation, and the efficiency of degradation was confirmed by Chemical Oxygen Demand measurement. Results: The dye degradation was found to be better in the presence of solar irradiation than under UV irradiation. The photocatalytic activity of ZnO was higher than TiO2 when used in its optimal conditions. Conclusion: The percentage of degradation of each dye is different, and the order of degradation of the three reactive dyes is as follows: RBY> RBR> RBB.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3874 ◽  
Author(s):  
Abderrahim El Mragui ◽  
Yuliya Logvina ◽  
Luís Pinto da Silva ◽  
Omar Zegaoui ◽  
Joaquim C.G. Esteves da Silva

Pure TiO2 and Fe- and Co-doped TiO2 nanoparticles (NPs) as photocatalysts were synthesized using wet chemical methods (sol-gel + precipitation). Their crystalline structure and optical properties were analyzed using X-ray diffraction (XRD), Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of the synthesized nanoparticles was evaluated through degradation of carbamazepine (CBZ) under UV-A and visible-light irradiations. The XRD and Raman analyses revealed that all synthesized nanomaterials showed only the anatase phase. The DRS results showed that the absorption edge was blue-shifted for Fe-doped TiO2 NPs. The decrease in charge recombination was evidenced from the PL investigation for both Co-doped and Fe-doped TiO2 nanomaterials. An enhancement in photocatalytic degradation of carbamazepine in aqueous suspension under both UV-A light and visible-light irradiations was observed for Fe-doped Titania NPs by comparison with pure TiO2. These results suggest that the doping cations could suppress the electron/hole recombination. Therefore, the photocatalytic activity of TiO2-based nanomaterials was enhanced.


RSC Advances ◽  
2013 ◽  
Vol 3 (32) ◽  
pp. 13390 ◽  
Author(s):  
Alagarsamy Pandikumar ◽  
Kumarsrinivasan Sivaranjani ◽  
Chinnakonda S. Gopinath ◽  
Ramasamy Ramaraj

2020 ◽  
Vol 4 (2) ◽  
pp. 48 ◽  
Author(s):  
Gajanan Kale ◽  
Sudhir Arbuj ◽  
Ujjwala Chothe ◽  
Supriya Khore ◽  
Latesh Nikam ◽  
...  

A highly crystalline ordered Cu-TiO2 nanostructure was synthesized using a simple paper template method using cupric nitrate and titanium isopropoxide as precursors. The structural study by XRD confirmed the formation of highly crystalline anatase phase of Cu-TiO2. The broad diffraction peaks of Cu-TiO2 exhibit the nanocrystalline nature of the product. The optical study by UV-DRS indicated the red shift in absorption wavelength with an increase in Cu doping, i.e., towards the visible region. The FE-SEM and FE-TEM study validated the formation of spherical shaped nanoparticles of Cu-TiO2 having sizes in the range of 20–30 nm. Considering the absorption in the visible region, the photocatalytic study was performed for water splitting and rhodamine-B (RhB) dye degradation under natural sunlight. The 2% Cu-doped TiO2 showed the highest photocatalytic hydrogen evolution, i.e., 1400 µmol·g−1·h−1 from water, among the prepared compositions. The photocatalytic performance of Cu-TiO2 conferred complete degradation of RhB dye within 40 min. The higher activity in both cases was attributed to the formation of highly crystalline ordered nanostructure of Cu-doped TiO2. This synthesis approach has potential to prepare other highly crystalline ordered nanostructured semiconductors for different applications.


2021 ◽  
Author(s):  
Elhachmi Guettaf Temam ◽  
Faiçal Djani ◽  
Saad Rahmane ◽  
Hachemi Ben Temam ◽  
Brahim Gasmi

Abstract Photocatalytic activity of semiconductors is affected by the nature of metal dopant. To study the effect of non-transition and transition metal on the physical and optical properties of TiO2 based photocatalysts; Al and Ni-doped TiO2 thin films respectively were prepared via a sol-gel dip-coating method. The effect of the photocatalysis process on the properties of TiO2 based thin films was investigated. The photocatalytic activity was calculated from methylene blue dye degradation under sunlight irradiation. XRD results show that un-doped TiO2 films were grown with anatase phase, whereas, the Ni and Ni/Al-doped TiO2 films show Ti4O7 single phase. The presence of Al preferred the rutile phase. No phases related to NiO or Al2O3 were detected. Ni-TiO2 photocatalyst shows high photocatalytic activity (~ 93%) thanks to the high content of O and Ti, wide bandgap (3.35 eV), low crystal size (6.87 nm), high film thickness (288 nm), and high surface roughness (44.5 nm). After photocatalysis, all the films show a decrease in O content and thickness, whereas the indirect bandgap values were increased which suggesting the reuse with low photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document