scholarly journals Highly Crystalline Ordered Cu-dopedTiO2Nanostructure by Paper Templated Method: Hydrogen Production and Dye Degradation under Natural Sunlight

2020 ◽  
Vol 4 (2) ◽  
pp. 48 ◽  
Author(s):  
Gajanan Kale ◽  
Sudhir Arbuj ◽  
Ujjwala Chothe ◽  
Supriya Khore ◽  
Latesh Nikam ◽  
...  

A highly crystalline ordered Cu-TiO2 nanostructure was synthesized using a simple paper template method using cupric nitrate and titanium isopropoxide as precursors. The structural study by XRD confirmed the formation of highly crystalline anatase phase of Cu-TiO2. The broad diffraction peaks of Cu-TiO2 exhibit the nanocrystalline nature of the product. The optical study by UV-DRS indicated the red shift in absorption wavelength with an increase in Cu doping, i.e., towards the visible region. The FE-SEM and FE-TEM study validated the formation of spherical shaped nanoparticles of Cu-TiO2 having sizes in the range of 20–30 nm. Considering the absorption in the visible region, the photocatalytic study was performed for water splitting and rhodamine-B (RhB) dye degradation under natural sunlight. The 2% Cu-doped TiO2 showed the highest photocatalytic hydrogen evolution, i.e., 1400 µmol·g−1·h−1 from water, among the prepared compositions. The photocatalytic performance of Cu-TiO2 conferred complete degradation of RhB dye within 40 min. The higher activity in both cases was attributed to the formation of highly crystalline ordered nanostructure of Cu-doped TiO2. This synthesis approach has potential to prepare other highly crystalline ordered nanostructured semiconductors for different applications.

2019 ◽  
Vol 3 (3) ◽  
pp. 75 ◽  
Author(s):  
Mamo Gebrezgiabher ◽  
Gebrehiwot Gebreslassie ◽  
Tesfay Gebretsadik ◽  
Gebretinsae Yeabyo ◽  
Fikre Elemo ◽  
...  

Magnetically recyclable C-doped TiO2/Fe3O4 (C-TiO2/Fe3O4) nanocomposite was successfully synthesized via a sol–gel method. The synthesized samples were characterized using SEM, energy-dispersive X-ray spectroscopy (EDS), FTIR, and UV-VIS diffuse reflectance spectroscopy (DRS) techniques. The results clearly showed that a C-TiO2/Fe3O4 nanocomposite was produced. The photocatalytic activities of the prepared pristine (TiO2), C-doped TiO2 (C-TiO2) and C-TiO2/Fe3O4 were evaluated by the photodegradation of methyl orange (MO) under natural sunlight. The effect of catalyst loading and MO concentration were studied and optimized. The C-TiO2/Fe3O4 nanocomposite exhibited an excellent photocatalytic activity (99.68%) that was higher than the TiO2 (55.41%) and C-TiO2 (70%) photocatalysts within 150 min. The magnetic nanocomposite could be easily recovered from the treated solution by applying external magnetic field. The C-TiO2/Fe3O4 composite showed excellent photocatalytic performance for four consecutive photocatalytic reactions. Thus, this work could provide a simple method for the mass production of highly photoactive and stable C-TiO2/Fe3O4 photocatalyst for environmental remediation.


2010 ◽  
Vol 113-116 ◽  
pp. 1945-1950 ◽  
Author(s):  
Jie Luo ◽  
Xin Yuan Yang ◽  
De Liang Li

Using cesium nitrate and strontium nitrate as doping metal ions source, Cs-doped TiO2 and Sr-doped TiO2 photocatalysts were successfully synthesized through the hydrolysis of tetrabutyl titanate by an acid-catalyzed sol-gel method. The photocatalytic activities of these catalysts prepared at 600 °C for 2 h were evaluated by the degradation of methyl orange in aqueous solution under solar light irradiation, and the as-prepared samples with higher photocatalytic efficiency were characterized by means of X-ray diffraction (XRD) and UV-Vis absorption spectroscopy. The XRD patterns indicate that the crystal structure still remains as anatase phase for the doped samples, and the average crystal size of TiO2, 0.1 at% Cs-doped TiO2 and 0.3 at% Sr-doped TiO2 is 21.3, 13.1 and 10.8 nm, respectively. The band gap absorption shows red shift to the visible region for the doped samples from the UV-Vis spectrogram. The results show that the photocatalytic activity of TiO2 nanoparticles doped with Cs+ and Sr2+ exhibits a significant improvement and their degradation efficiencies are more than 30% in comparison with those of TiO2 under the same condition, and the optimal doping concentration is determined to be 0.1 at% and 0.3 at% for Cs+ and Sr2+, respectively.


2018 ◽  
Vol 15 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Ravi Kamble ◽  
Smita Mahajan ◽  
Vijaya Puri ◽  
Harish Shinde ◽  
Kalayanrao Garadkar

TiO2 and Cu-doped TiO2 nanoparticles (NPs) with totally extraordinary substance of Cu by exploitation hydrothermal method. The part immaculateness, morphology, molecule estimate, optical properties, and elemental composition of as-incorporated Cu-doped TiO2 NPs were investigated by numerous systematic methods. The XRD designs unveiled Cu-doped TiO2 NPs inside the part unadulterated anatase phase. The plane of (101) XRD and XPS results show the lucky doping of Cu2+ inside the TiO2 lattice. The optical edges of Cu-doped TiO2 demonstrated a transparent light absorption in visible region that assumes an essential part inside the photocatalytic action underneath characteristic daylight. Certain Cu2+ content shows least PL intensity that backings the decrease in recombination rate of charge species. In addition, to get a handle on photocatalytic action, we have tried Cu-doped TiO2 for the degradation of Malachite Green (MG) under visible light. A large portion of 85% degradation was found for Cu-doped TiO2 (1.71 wt.%) underneath daylight minimum of 180 min, severally, that is past that of TiO2 (53%). Also, the degradation of the MG was affirmed by measurement of the chemical oxygen demand of the photodegraded solution. These outcomes demonstrates that the Cu-doped TiO2 NPs are extremely productive for the photodegration of the MG.


2020 ◽  
Vol 6 (4) ◽  
pp. 918-923
Author(s):  
Pawar Mahendrasingh ◽  
Nimbalkar Vrushali ◽  
Gaonar Manisha ◽  
Khajone Anita ◽  
Taywade Rahul

Nitrogen doped TiO2 nanoparticles (N-doped TiO2) in different mol percentage (2-6 mol%) of nitrogen with anatase phase, have been prepared by using EDTA-glycol method. Samples were characterized by various physico-chemical techniques. Physico-chemical characterization revealed that crystallite size, surface hydroxylation, and tuning of optical band gap towards visible region of catalyst increases with increase in dopant concentration upto 4.0 mol% in TiO2 host lattice. Thereafter, the samples were used to photocatalytic degradation of the organic dye methylene blue (MB) under sunlight irradiation directly. The progress of photodegradation reaction was monitored by UV-visible spectroscopy. During photocatalytic reaction, the effect of calcination temperature, amount of catalyst, initial concentration of dye and the effect of pH on the rate of degradation reaction was also studied. It is clearly shown that N doping in TiO2 results in the enhancement of the degradation ability of MB in UV-visible light.


2021 ◽  
Author(s):  
Elhachmi Guettaf Temam ◽  
Faiçal Djani ◽  
Saad Rahmane ◽  
Hachemi Ben Temam ◽  
Brahim Gasmi

Abstract Photocatalytic activity of semiconductors is affected by the nature of metal dopant. To study the effect of non-transition and transition metal on the physical and optical properties of TiO2 based photocatalysts; Al and Ni-doped TiO2 thin films respectively were prepared via a sol-gel dip-coating method. The effect of the photocatalysis process on the properties of TiO2 based thin films was investigated. The photocatalytic activity was calculated from methylene blue dye degradation under sunlight irradiation. XRD results show that un-doped TiO2 films were grown with anatase phase, whereas, the Ni and Ni/Al-doped TiO2 films show Ti4O7 single phase. The presence of Al preferred the rutile phase. No phases related to NiO or Al2O3 were detected. Ni-TiO2 photocatalyst shows high photocatalytic activity (~ 93%) thanks to the high content of O and Ti, wide bandgap (3.35 eV), low crystal size (6.87 nm), high film thickness (288 nm), and high surface roughness (44.5 nm). After photocatalysis, all the films show a decrease in O content and thickness, whereas the indirect bandgap values were increased which suggesting the reuse with low photocatalytic activity.


2021 ◽  
Vol 16 (2) ◽  
pp. 21-30
Author(s):  
Julie Joseane Murcia Mesa ◽  
Mónica Sirley Hernández Laverde ◽  
Hugo Alfonso Rojas Sarmiento ◽  
Mayra Anabel Lara Angulo ◽  
José Antonio Navío ◽  
...  

As other studies have demonstrated, improving the effectiveness of TiO2 for environmental remediation requires that the properties of this oxide be modified using different synthesis methods. In the current study, labprepared TiO2 was synthesized using the hydrothermal method and two different Ti precursors (titanium butoxide and titanium isopropoxide). After the synthesis, the obtained titania was also modified using photodeposition by platinum nanoparticles. This study aims to evaluate the effectiveness of the photocatalytic materials prepared in photodegrading methyl orange. The Ti precursors used in the TiO2 synthesis had a slight effect on the physicochemical properties of the oxide obtained. When titanium butoxide was used as a precursor, we observed a change in the bandgap value and some material with the largest surface area. Additionally, the addition of Pt increased the absorption of TiO2 in the visible region of the electromagnetic spectrum and slightly decreased the bandgap value of this oxide. The photocatalyst prepared using titanium isopropoxide as a precursor showed the most remarkable effectiveness in the degradation rate of methyl orange. This is the result of the lower band gap value of this material which leads to easier transport of the photogenerated charges during the photocatalytic reaction. We also observed that the addition of Pt has a detrimental effect on the effectiveness of TiO2 in dye degradation, which may be due to possible obstruction of the dye-photocatalyst interaction on the TiO2 surface because of the Pt nanoparticles observed by tem. The effectiveness of commercial TiO2 in methyl orange degradation is slightly higher than that observed in other evaluated solids.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3918
Author(s):  
Ratshilumela S. Dima ◽  
Lutendo Phuthu ◽  
Nnditshedzeni E. Maluta ◽  
Joseph K. Kirui ◽  
Rapela R. Maphanga

Titanium dioxide (TiO2) polymorphs have recently gained a lot of attention in dye-sensitized solar cells (DSSCs). The brookite polymorph, among other TiO2 polymorphs, is now becoming the focus of research in DSSC applications, despite the difficulties in obtaining it as a pure phase experimentally. The current theoretical study used different nonmetals (C, S and N) and (C-S, C-N and S-N) as dopants and co-dopants, respectively, to investigate the effects of mono-doping and co-doping on the electronic, structural, and optical structure properties of (210) TiO2 brookite surfaces, which is the most exposed surface of brookite. The results show that due to the narrowing of the band gap and the presence of impurity levels in the band gap, all mono-doped and co-doped TiO2 brookite (210) surfaces exhibit some redshift. In particular, the C-doped, and C-N co-doped TiO2 brookite (210) surfaces exhibit better absorption in the visible region of the electromagnetic spectrum in comparison to the pure, S-doped, N-doped, C-S co-doped and N-S co-doped TiO2 brookite (210) surfaces.


2012 ◽  
Vol 584 ◽  
pp. 396-400 ◽  
Author(s):  
Aravind Naga Revuru ◽  
Nagarajan Padmavathy ◽  
Angappan Sheela ◽  
Swamiappan Sasikumar

The major cause of surface and ground water contamination is due to effluent from dyeing industries. The discharged effluent chemicals inhibit light penetration into water bodies and some are considered to be carcinogenic. In this study, the photocatalytic decomposition of the synthetic dye, methylene blue was investigated in the presence of activated TiO2. The TiO2 sample was characterized by using XRD to analyze the presence of anatase and rutile phases. The dye degradation was monitored as a change in absorbance by UV-Visible spectrophotometer. The contributing factors towards dye degradation include both the dye concentration as well as the quantity of TiO2 used. Different quantities of TiO2 in anatase phase was taken and activated under UV radiation for 15 min. and subsequently coated on to TLC plates using 5% polyvinyl alcohol as a binding agent. This photocatalytic plate was kept in the methylene blue dye solution and exposed to sunlight. The results shows that 57% of the 30ppm methylene blue dye gets degraded within 75min., when exposed to UV activated TiO2 in presence of natural sunlight.


Sign in / Sign up

Export Citation Format

Share Document