scholarly journals An Assessment of Thick Nanocomposite Plates’ Behavior under the Influence of Carbon Nanotubes Agglomeration

2021 ◽  
Vol 5 (2) ◽  
pp. 41
Author(s):  
Débora S. Craveiro ◽  
Maria A. R. Loja

The influence assessment of carbon nanotubes (CNTs) agglomeration on CNT-reinforced composite (CNTRC) thick plates’ behavior is the main aim of the present work. CNTs are known to agglomerate into clusters even for relatively low volume fractions, which imposes the need to characterize the effects this may introduce in structures behavior, also knowing that recent works have concluded that neglecting agglomeration phenomenon may lead to an overestimation of the mechanical properties of nanocomposites. Hence, it matters to understand how the arising of these clusters may affect the static and free vibrational behaviors of low side-to-thickness nanocomposite plates. To this purpose, the nanocomposite plate properties’ estimation is performed by using the two-parameter model of agglomeration based on the Eshelby–Mori–Tanaka approach, while for behavioral analyses one considers a Higher-order Shear Deformation Theory (HSDT) based on the displacement field of Kant, implemented through the finite element method. The analyses developed consider a set of parametric studies involving the assessment of the influence of side-to-side ratios, side-to-thickness ratios, boundary conditions, and CNTs’ distributions along the thickness. The results obtained allow concluding that the transverse deflections and fundamental frequencies of these structures are significantly influenced by the CNTs’ agglomeration.

2020 ◽  
pp. 59-60
Author(s):  
D. Nikhitha

In the present investigation, static stability of functionally graded carbon nanotube reinforced composite (FGCNTRC) square plates with a circular hole is investigated using the finite element method . A higher-order shear deformation theory is used in the investigation. An eight nodedisoparametric plate bending element with nine degrees of freedom at each node is used. The critical loads are presented for various volume fractions and CNT patterns for two sets of boundary conditions.


Author(s):  
K Avramov ◽  
D Myrzaliyev ◽  
B Uspensky ◽  
N Sakhno ◽  
KK Seitkazenova

Functionally graded carbon nanotubes reinforced composite joined spherical-cylindrical-spherical thin-walled structure under the actions of axial and lateral distributed loads is considered. The static buckling of this structure is analyzed numerically. The Ritz method is used to derive the governing equations of the joined thin-walled structure buckling. Higher-order shear deformation theory is applied to describe the structure stress-strain state. The continuity conditions of the spherical-cylinder junction are derived. The displacements projections are chosen in the special form to satisfy these continuity conditions. The dependences of the buckling axial load on the CNTs distributions, CNTs volume fractions are analyzed numerically.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 79 ◽  
Author(s):  
Masoud Mohammadi ◽  
Mohammad Arefi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

This study analyses the two-dimensional thermo-elastic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) cylindrical pressure vessels, by applying the third-order shear deformation theory (TSDT). The effective properties of FG-CNTRC cylindrical pressure vessels are computed for different patterns of reinforcement, according to the rule of mixture. The governing equations of the problem are derived from the principle of virtual works and are solved as a classical eigenproblem under the assumption of clamped supported boundary conditions. A large parametric investigation aims at showing the influence of some meaningful parameters on the thermo-elastic response, such as the type of pattern, the volume fraction of CNTs, and the Pasternak coefficients related to the elastic foundation.


2020 ◽  
Vol 231 (10) ◽  
pp. 4381-4395 ◽  
Author(s):  
Krzysztof Magnucki ◽  
Jerzy Lewinski ◽  
Ewa Magnucka-Blandzi

Abstract The paper is devoted to simply supported beams under three-point bending. Their mechanical properties symmetrically vary in the depth direction. The individual shear deformation theory for beams of such features is proposed. Based on the principle of stationary total potential energy the differential equations of equilibrium are obtained. The system of the equations is analytically solved, and the shear coefficients and deflections of example beams are calculated. The solution is compared with other analytical results obtained with the use of another deformation function. Moreover, the bending problem of these beams is also numerically studied using the finite element method. Results of analytical and numerical studies are presented in Figures and Tables.


2018 ◽  
Vol 90 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Kulmani Mehar ◽  
Subrata Kumar Panda

Purpose The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced composite doubly curved shell panel using higher-order shear deformation theory with thermal load. It is well-known that functionally graded materials are a multidimensional problem, and the present numerical model is also capable of solving the flexural behaviour of different shell panel made up of carbon nanotube-reinforced composite with adequate accuracy in the absence of experimentation. Design/methodology/approach In this current paper, the responses of the single-walled carbon nanotube-reinforced composite panel is computed numerically using the proposed generalised higher-order mathematical model through a homemade computer code developed in MATLAB. The desired flexural responses are computed numerically using the variational method. Findings The validity and the convergence behaviour of the present higher-order model indicate the necessity for the analysis of multidimensional structure under the combined loading condition. The effect of various design parameters on the flexural behaviour of functionally graded carbon nanotube doubly curved shell panel are examined to highlight the applicability of the presently proposed higher-order model under thermal environment. Originality/value In this paper, for the first time, the static behaviour of functionally graded carbon nanotube-reinforced composite doubly curved shell panel is analysed using higher-order shear deformation theory. The properties of carbon nanotube and the matrix material are considered to be temperature dependent. The present model is so general that it is capable of solving various geometries from single curve to doubly curved panel, including the flat panel.


2014 ◽  
Vol 61 (3) ◽  
pp. 495-513 ◽  
Author(s):  
Mohammad Zamani Nejad ◽  
Mehdi Jabbari ◽  
Mehdi Ghannad

Abstract In this article, the thick truncated cone shell is divided into disk-layers form with their thickness corresponding to the thickness of the cone. Due to the existence of shear stress in the truncated cone, the equations governing disk layers are obtained based on first shear deformation theory. These equations are in the form of a set of general differential equations. Given that the truncated cone is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. The results obtained have been compared with those obtained through the analytical solution and the numerical solution. For the purpose of the analytical solution, use has been made of matched asymptotic method (MAM) and for the numerical solution, the finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document