scholarly journals Study of the Surface and Dimensional Quality of the AlSi10Mg Thin-Wall Components Manufactured by Selective Laser Melting

2021 ◽  
Vol 5 (5) ◽  
pp. 126
Author(s):  
Muhammad Waqas ◽  
Dingyong He ◽  
Hassan Elahi ◽  
Saleem Riaz ◽  
Marco Eugeni ◽  
...  

Additive manufacturing (AM), a 3D printing technique that manufactures components by sequential addition of powder, has massively reshaped the manufacturing and engineering sectors from batch production to manufacturing customized, innovative, state-of-the-art, and sustainable products. Additive manufacturing of aluminum alloys by selective laser melting (SLM) is one of the latest research trends in this field due to the fact of its advantages and vast applications in manufacturing industries such as automobiles and aerospace. This paper investigated the surface and dimensional quality of SLM-built AlSi10Mg parts using a response surface method (RSM) and found the influence of the wall thickness and process parameters (i.e., laser power, scanning speed, hatch distance) on the pieces. Thin-walled test specimens of AlSi10Mg alloy were manufactured with different combinations of process parameters at three wall thicknesses: 1.0 mm, 2.0 mm, and 3.0 mm. The Minitab DOE module was used to create 27 different configurations of wall thickness and process parameters. The samples’ surface roughness and dimensional accuracy were investigated, and the findings were evaluated using the ANOVA technique. The regression model and the ANOVA technique showed high precision and had a particular reference value for practical engineering applications.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2343 ◽  
Author(s):  
Ahmed Maamoun ◽  
Yi Xue ◽  
Mohamed Elbestawi ◽  
Stephen Veldhuis

Additive manufacturing (AM) of high-strength Al alloys promises to enhance the performance of critical components related to various aerospace and automotive applications. The key advantage of AM is its ability to generate lightweight, robust, and complex shapes. However, the characteristics of the as-built parts may represent an obstacle to the satisfaction of the parts’ quality requirements. The current study investigates the influence of selective laser melting (SLM) process parameters on the quality of parts fabricated from different Al alloys. A design of experiment (DOE) was used to analyze relative density, porosity, surface roughness, and dimensional accuracy according to the interaction effect between the SLM process parameters. The results show a range of energy densities and SLM process parameters for AlSi10Mg and Al6061 alloys needed to achieve “optimum” values for each performance characteristic. A process map was developed for each material by combining the optimized range of SLM process parameters for each characteristic to ensure good quality of the as-built parts. This study is also aimed at reducing the amount of post-processing needed according to the optimal processing window detected.


2018 ◽  
Vol 786 ◽  
pp. 356-363
Author(s):  
Tero Jokelainen ◽  
Kimmo Mäkelä ◽  
Aappo Mustakangas ◽  
Jari Mäkelä ◽  
Kari Mäntyjärvi

Additive Manufacturing (AM) does not yet have a standardized way to measure performance. Here a AM machines dimensional accuracy is measured trough acceptance test (AT) and AM machines capability is tested trough test parts. Test parts are created with specific geometrical features using a 3D AM machine. Performance of the machine is then evaluated trough accuracy of test parts geometry. AM machine here uses selective laser melting (SLM) process. This machine has done Factory acceptance test (FAT) to ascertain this machine ́s geometrical accuracy with material AISI 316L. Manufacturer promises accuracy of ±0.05 mm. These parts are used as comparison to AT parts made in this study. After installation two AT parts are manufactured with AM machine. One with AISI 316L and one AlSi10Mg. Dimensional accuracy of geometrical features on these parts are then compared to FAT part and to one another. Machines capability is measured trough two test parts done with material AlSi10Mg. Two of the test parts are done at the same time using same model as the FAT. Parts are printed without supports and with features facing same directions. Features of these parts were then evaluated. Another test to find out AM machines capability was to create part consisting of pipes doing 90˚ angle resulting in horizontal and vertical holes. Dimensional accuracy and circularity of holes was measured. Through these tests machines capability is benchmarked.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Junjie Jiang ◽  
Jianming Chen ◽  
Zhihao Ren ◽  
Zhongfa Mao ◽  
Xiangyu Ma ◽  
...  

With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (EF) had a significant influence on the quality of the lower surface. Excessive EF led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low EF easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low EF and high EF, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.


Author(s):  
Miranda Fateri ◽  
Andreas Gebhardt

Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.


Author(s):  
Mohsen Taheri Andani ◽  
Christoph Haberland ◽  
Jason Walker ◽  
Mohammad Elahinia

It’s well accepted that the thermo-mechanical properties of Nitinol (NiTi) are strongly affected by the material processing. Additive manufacturing has been recently considered as an interesting technique to develop Nitinol devices with sophisticated geometries, which are impossible or very difficult to be produced through typical manufacturing procedures. In the present work, the effect of energy input on the phase transformation temperatures, as the most critical thermal parameters of the shape memory material, of Nitinol parts manufactured by selective laser melting is investigated and discussed.


2019 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

Laser based powder bed fusion (LBPF) or selective laser melting (SLM) is making a leap march towards fabricating novel materials with improved functionalities. An attempt has been made here to fabricate hard quasicrystalline composites via SLM, which demonstrates that the process parameters can be used to vary the phases in the composites. The mechanical properties of the composite depend on their constituents and hence can be varied by varying the process parameters. The results show that SLM not only produces parts with improved functionalities and complex shape but also leads to defined phases and tunable properties.


2021 ◽  
Vol 72 ◽  
pp. 419-430
Author(s):  
Zheng-Xiong Ma ◽  
Jie Ning ◽  
Bing Yu ◽  
Lin-Jie Zhang ◽  
Ji-Hong Fan ◽  
...  

Author(s):  
Sagar Sarkar ◽  
Ankit Porwal ◽  
Nuthalapati Yaswanth ◽  
Ashish Kumar Nath

Selective Laser Melting process enables production of geometrically complex parts directly from CAD model by melting metal powders layer by layer. For successful building of parts, some auxiliary structures namely support structures are also built to ensure proper heat conduction from actual parts to be built to the base plate. Support structures are needed if there are overhang surfaces in the design of the part. If the design of the part is very complex and features many overhang surfaces, then too many supports get generated. After building the part, these support structures need to be removed properly to get desired geometrical features and it may deteriorate the surface quality from where supports are removed. Sometimes removal of support structures becomes very difficult specially for parts having internal features. In this study, first effect of inclined angle, aspect ratio and different scanning strategies on the quality of overhang surfaces produced without any support structure under constant laser power and scan speed has been investigated. Scanning Electron Microscopy (SEM) images of overhang surfaces have been analyzed to investigate the presence of warping and uneven fused edges if any. It was found that with increase in inclined angles and aspect ratio, warping and presence of uneven fused edges increases. Rotational scanning strategy found to be better than linear alternate scanning strategy for reduced uneven fused edges formation and warping. Results show an overhang without any support structure can be built successfully with a single laser process parameters upto 25.343 degree which is less than theoretical critical angle of 26.565 degree. Further, it has been shown, using a novel strategy of building overhang with multiple laser process parameters, it is possible to build overhang even upto 24.132 degree.


Sign in / Sign up

Export Citation Format

Share Document