scholarly journals A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials

2021 ◽  
Vol 5 (12) ◽  
pp. 319
Author(s):  
Ranjeetkumar Gupta ◽  
Daniel Mitchell ◽  
Jamie Blanche ◽  
Sam Harper ◽  
Wenshuo Tang ◽  
...  

The growing demand and diversity in the application of industrial composites and the current inability of present non-destructive evaluation (NDE) methods to perform detailed inspection of these composites has motivated this comprehensive review of sensing technologies. NDE has the potential to be a versatile tool for maintaining composite structures deployed in hazardous and inaccessible areas, such as offshore wind farms and nuclear power plants. Therefore, the future composite solutions need to take into consideration the niche requirements of these high-value/critical applications. Composite materials are intrinsically complex due to their anisotropic and non-homogeneous characteristics. This presents a significant challenge for evaluation and the associated data analysis for NDEs. For example, the quality assurance, certification of composite structures, and early detection of the failure is complex due to the variability and tolerances involved in the composite manufacturing. Adapting existing NDE methods to detect and locate the defects at multiple length scales in the complex materials represents a significant challenge, resulting in a delayed and incorrect diagnosis of the structural health. This paper presents a comprehensive review of the NDE techniques, that includes a detailed discussion of their working principles, setup, advantages, limitations, and usage level for the structural composites. A comparison between these techniques is also presented, providing an insight into the future trends for composites’ prognostic and health management (PHM). Current research trends show the emergence of the non-contact-type NDE (including digital image correlation, infrared tomography, as well as disruptive frequency-modulated continuous wave techniques) for structural composites, and the reasons for their choice over the most popular contact-type (ultrasonic, acoustic, and piezoelectric testing) NDE methods is also discussed. The analysis of this new sensing modality for composites’ is presented within the context of the state-of-the-art and projected future requirements.

2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091376 ◽  
Author(s):  
Bing Wang ◽  
Shuncong Zhong ◽  
Tung-Lik Lee ◽  
Kevin S Fancey ◽  
Jiawei Mi

Composite materials/structures are advancing in product efficiency, cost-effectiveness and the development of superior specific properties. There are increasing demands in their applications to load-carrying structures in aerospace, wind turbines, transportation, medical equipment and so on. Thus, robust and reliable non-destructive testing of composites is essential to reduce safety concerns and maintenance costs. There have been various non-destructive testing methods built upon different principles for quality assurance during the whole lifecycle of a composite product. This article reviews the most established non-destructive testing techniques for detection and evaluation of defects/damage evolution in composites. These include acoustic emission, ultrasonic testing, infrared thermography, terahertz testing, shearography, digital image correlation, as well as X-ray and neutron imaging. For each non-destructive testing technique, we cover a brief historical background, principles, standard practices, equipment and facilities used for composite research. We also compare and discuss their benefits and limitations and further summarise their capabilities and applications to composite structures. Each non-destructive testing technique has its own potential and rarely achieves a full-scale diagnosis of structural integrity. Future development of non-destructive testing techniques for composites will be directed towards intelligent and automated inspection systems with high accuracy and efficient data processing capabilities.


2014 ◽  
Vol 605 ◽  
pp. 303-305
Author(s):  
Jerome Rossignol ◽  
Alain Thionnet

In the field of the transport, the increase of the security rule recommends to a periodic control of the structure to detect damage due to mechanical loadings. Now, current materials, used in the case of transport applications, are the composite materials. The methods, to control these materials or composite structures, need to be low cost, non-destructive, in-situ and swiftness as far as possible. The scientific literature reports many methods to control the damage in composite materials and structures. However the above requirements and the adaptation to composite materials reduce the number of methods that can be used. Currently, the adapted methods are based on infrared thermography, acoustical emission, EMIR (ElectroMagnetic InfraRed) or microwave imagery. We present an innovative non-destructive method of detecting damages in composite materials. The method is based on the observation and analysis of the modification in dielectric material resulting from damage. The originality of this method is that the diagnostic is obtained by using a microstrip resonator at microwave frequencies. The feasibility of the method is demonstrated by the detection of a fibre break into an unidirectional composite submitted to a flexural loading. The fibre break is the damage to detect. The perspective of this work is to develop a quantification and a localization of damages.


Author(s):  
Yingtao Liu ◽  
Joel Johnston ◽  
Aditi Chattopadhyay

Adhesive bonded joints have been increasingly employed in aerospace, automotive, and other mechanical systems due to the advantages of uniform stress distribution, less stress concentration, light in weight, etc. However, the early damage stage of the adhesive bond joints, which are usually named as kissing bond, can significantly impact the structural integrity and safety. Kissing bond is difficult to detect and identify using current non-destructive evaluation (NDE) techniques since there is no clearly gap or interface between the bond area. Attempts using advanced ultrasonic methods have reached limited success, but more reliable methods need to be developed before adhesive joints can be more widely applied to the engineering field. This paper focuses on the development of detection method using digital image correlation (DIC) technique. Three types of adhesive kissing bond joint samples were fabricated using different contamination recipe to simulate the kissing bonds. The performance of the fabricated joint samples were tested using uniaxial hydraulic test frame and the detection capability of DIC system was investigated. The noncontact strain field measurement method using DIC can indicate the existence of kissing bonds with limited load. The results of DIC measurement is encouraging and can be further used for the NDE estimation of mechanical properties of the kissing bond.


2019 ◽  
Vol 19 (1) ◽  
pp. 71-76
Author(s):  
Marcela Kolínová ◽  
Totka Bakalova ◽  
Lukáš Voleský ◽  
Pavel Kejzlar ◽  
Vladimir Kovačíč

2002 ◽  
Author(s):  
◽  
Kevin M. Dugmore

The experiments and their results contained herein will form the basis for the development of a portable non-destructive testing device for composite structures. This device is to be capable of detecting any of a variety of defects and assessing their severity within a short time


2021 ◽  
Author(s):  
Sonia Mogilevskaya ◽  
Anna Y Zemlyanova ◽  
Volodymyr Kushch

Abstract Modern advances in material science and surface chemistry lead to creation of composite materials with enhanced mechanical, thermal, and other properties. It is now widely accepted that the enhancements are achieved due to drastic reduction in sizes of some phases of composite structures. This leads to increase in surface to volume ratios, which makes surface- or interface-related effects to be more significant. For better understanding of these phenomena, the investigators turned their attention to various theories of material surfaces. This paper is a review of two most prominent theories of that kind, the Gurtin-Murdoch and Steigmann-Ogden theories. Here, we provide comprehensive review of relevant literature, summarize the current state of knowledge, and present several new results.


Sign in / Sign up

Export Citation Format

Share Document