scholarly journals Technological Aspects of Producing Surface Composites by Friction Stir Processing—A Review

2021 ◽  
Vol 5 (12) ◽  
pp. 323
Author(s):  
Józef Iwaszko ◽  
Moosa Sajed

FSP (friction stir processing) technology is a modern grain refinement method that is setting new trends in surface engineering. This technology is used not only to modify the microstructure of the surface layer of engineering materials, but increasingly more often also to produce surface composites. The application potential of FSP technology lies in its simplicity and speed of processing and in the wide range of materials that can be used as reinforcement in the composite. There are a number of solutions enabling the effective and controlled introduction of the reinforcing phase into the plasticized matrix and the production of the composite microstructure in it. The most important of them are the groove and hole methods, as well as direct friction stir processing. This review article discusses the main and less frequently used methods of producing surface composites using friction stir processing, indicates the main advantages, disadvantages and application limitations of the individual solutions, in addition to potential difficulties in effective processing. This information can be helpful in choosing a solution for a specific application.

2019 ◽  
Vol 969 ◽  
pp. 839-845
Author(s):  
P.R. Surya ◽  
Prabhu Ram ◽  
M. Arivarasu ◽  
P.L. Rozario ◽  
R.K. Mishra

Friction stir processing (FSP) is emerging as a singular solid-state surface engineering technique to fabricate surface composites (SC) since its adaption from Friction Stir Welding (FSW) from the early 90s. FSP is a promising technique to overcome the barrier of magnesium being a poor material in terms of wear and corrosion resistant without adding much on the processing cost and thus, widen its applications.The targeted property enhancement by forming surface composites via FSP are strength, ductility, hardness, wear resistance, toughness, fatigue life, formability, corrosion resistance, etc. Although, a decade of research work has been carried out on FSP for different metal alloys, the advantages of the process particularly on magnesium alloys is yet to be understood clearly. The present review is focused on understanding the response of magnesium alloys for friction stir processing to fabricate surface composites. The available literatures have been thoroughly reviewed to present the microstructure evolution during processing and the mechanism of strengthening; the works on magnesium has been summarized to understand the effect of various processing parameters such as tool speed (rotation and traverse), number of passes, etc. and the tool geometry on the resulting properties. Also, details regarding the selection of suitable tool material and reinforcing particles to achieve optimum properties for specific magnesium alloys is included. Important suggestions and scope for further research regarding fabrication of surface composites on magnesium alloy are provided.


2018 ◽  
Vol 15 (1) ◽  
pp. 68-74
Author(s):  
N. Yuvaraj

Aluminum based metal matrix composites are given more attention in fabrication of surface engineering applications due to their excellent mechanical and wear properties. In this study, Friction stir processing (FSP) method was used to fabricate the surface composite with inserting different volume % of ZrO2 reinforcement particles in the Aluminum 6082 alloy. The hardness and triblogical characteristics of fabricated surface composites and base alloy were investigated. The higher volume content of reinforcement surface revealed higher hardness and higher wear resistance compared to the lower volume content reinforcement surface and base material. The wear worn-out of composite surfaces and base alloy were examined through SEM for understanding the wear mechanisms.


2021 ◽  
Vol 890 ◽  
pp. 56-65
Author(s):  
Cristian Ciucă ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Ion Aurel Perianu

The results obtained by ISIM Timisoara to the development of the friction stir welding process (FSW) have supported the extension of the researches on some derived processes, including friction stir processing (FSP). The experimental programs (the researches) were developed within complex research projects, aspects regarding the principle of the process, modalities and techniques of application, experiments for specific applications, being approached. The paper presents good results obtained by friction stir processing of cast aluminum alloys and copper alloys. The optimal process conditions, optimal characteristics of the processing tools were defined. The complex characterization of the processed areas was done, the advantages of the process applying being presented, especially for the cast aluminum alloys: EN AW 4047, EN AW 5083 and EN AW 7021. The characteristics of the processed areas are compared with those of the base materials. The results obtained are a solid basis for substantiating of some specific industrial applications, especially in the automotive, aeronautical / aerospace fields.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


Author(s):  
Behrouz Bagheri ◽  
Amin Abdollahzadeh ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Ahmad Ostovari Moghaddam

In this paper, the effect of mechanical vibration with reinforcement particles namely Silicon Carbide (SiC) on microstructure, mechanical properties, wear, and corrosion behaviors of aluminum alloy surface composites fabricated via friction stir processing (FSP) was investigated. The method was entitled friction stir vibration process (FSVP). The results revealed that recrystallized fine grains formed in all processing samples as a result of dynamic recovery and recrystallization, while samples processed in friction stir vibration processing resulted in better grain refinement in the stir zone than in conventional friction stir processing. Compared to conventional friction stir processing, in friction stir vibration processing, the hardness and tensile strength increased due to microstructure modification and better reinforcing distribution. From corrosion analysis, the corrosion resistance of the friction stir vibration processed samples showed a significant increase compared to the friction stir processed specimens. The wear results indicated that the wear resistance of friction stir vibration processed specimens is higher than friction stir processed specimens due to the development of smaller grains and a more homogenous distribution of the strengthening particles as the vibration is applied.


Sign in / Sign up

Export Citation Format

Share Document