scholarly journals Changes in the Ground Reaction Force, Lower-Limb Muscle Activity, and Joint Angles in Athletes with Unilateral Ankle Dorsiflexion Restriction During A Rebound-Jump Task

2018 ◽  
Vol 3 (4) ◽  
pp. 52
Author(s):  
Hitoshi Kondo

Background: This study compared differences between a control group and a group with unilateral ankle dorsiflexion restriction in the ground reaction force (GRF), angles of the lower limbs joints, and muscular activity during a rebound-jump task in athletes who continue to perform sports activities with unilateral ankle dorsiflexion restriction. Methods: The athletes were divided into the following two groups: The dorsiflexion group included those with a difference of ≥7° between bilateral ankle dorsiflexion angles (DF), and the control group included those with a difference of <7° between the two ankles (C). An ankle foot orthosis was attached to subjects in group C to apply a restriction on the right-angle dorsiflexion angle. The percentage of maximum voluntary contraction (%MVC) of the legs musculature, components of the GRF, and the hip and knee joint angles during the rebound-jump task were compared between groups DF and C. Results: Group DF showed increased %MVC of the quadriceps muscle, decreased upward component of the GRF, decreased hip flexion, and increased knee eversion angles. Conclusions: This study highlighted that athletes with ankle dorsiflexion restriction had significantly larger knee eversion angles in the rebound-jump task. The reduced hip flexion was likely caused by the restricted ankle dorsiflexion and compensated by the observed increase in quadriceps muscle activation when performing the jump.

2021 ◽  
Vol 10 (14) ◽  
pp. 3119
Author(s):  
Nuria Sarroca ◽  
María José Luesma ◽  
José Valero ◽  
Javier Deus ◽  
Josefa Casanova ◽  
...  

Background: Walking is a complex process that is highly automated and efficient. This knowledge is essential for the study of pathological gait. The amputation of lower limbs involves new biomechanical load and gait patterns, and injuries due to overload or disuse may occur. The objective of this study is to assess muscle activation as part of the gait in unilateral transtibial amputee patients with prosthesis, at different speeds and with different plantar supports. Method: Included in the sample were 25 people with amputation and 25 control participants. Muscle activation was evaluated in both groups by means of surface electromyography (EMG) under normal and altered conditions. Results: Control participants did not show statistically significant differences (p ˃ 0.05) between their muscle groups, irrespective of support and speed. However, people with amputation did show differences in muscle activity in the quadriceps, all of which occurred at the highest speeds, irrespective of support. In the analysis between groups, significant differences (p < 0.05) were obtained between the leg of the amputee patient and the leg of the control participant, all of them in the quadriceps, and at speeds 3 and 4, regardless of the insole used. Conclusions: Participants with unilateral transtibial amputation carry out more quadriceps muscle activity during gait compared to the control group.


2021 ◽  
Vol 3 ◽  
Author(s):  
Usha Kuruganti ◽  
Ashirbad Pradhan ◽  
Jacqueline Toner

Transtibial amputation can significantly impact an individual's quality of life including the completion of activities of daily living. Those with lower limb amputations can harness the electrical activity from their amputated limb muscles for myoelectric control of a powered prosthesis. While these devices use residual muscles from transtibial-amputated limb as an input to the controller, there is little research characterizing the changes in surface electromyography (sEMG) signal generated by the upper leg muscles. Traditional surface EMG is limited in the number of electrode sites while high-density surface EMG (HDsEMG) uses multiple electrode sites to gather more information from the muscle. This technique is promising for not only the development of myoelectric-controlled prostheses but also advancing our knowledge of muscle behavior with clinical populations, including post-amputation. The HDsEMG signal can be used to develop spatial activation maps and features of these maps can be used to gain valuable insight into muscle behavior. Spatial features of HDsEMG can provide information regarding muscle activation, muscle fiber heterogeneity, and changes in muscle distribution and can be used to estimate properties of both the amputated limb and intact limb. While there are a few studies that have examined HDsEMG in amputated lower limbs they have been limited to movements such as gait. The purpose of this study was to examine the quadriceps muscle during a slow, moderate and fast isokinetic knee extensions from a control group as well as a clinical patient with a transtibial amputation. HDsEMG was collected from the quadriceps of the dominant leg of 14 young, healthy males (mean age = 25.5 ± 7 years old). Signals were collected from both the intact and amputated limb muscle of a 23 year old clinical participant to examine differences between the affected and unaffected leg. It was found that there were differences between the intact and amputated limb limb of the clinical participant with respect to muscle activation and muscle heterogeneity. While this study was limited to one clinical participant, it is important to note the differences in muscle behavior between the intact and amputated limb limb. Understanding these differences will help to improve training protocols for those with amputation.


Author(s):  
Ross M. Neuman ◽  
Staci M. Shearin ◽  
Karen J. McCain ◽  
Nicholas P. Fey

Abstract Background Gait impairment is a common complication of multiple sclerosis (MS). Gait limitations such as limited hip flexion, foot drop, and knee hyperextension often require external devices like crutches, canes, and orthoses. The effects of mobility-assistive technologies (MATs) prescribed to people with MS are not well understood, and current devices do not cater to the specific needs of these individuals. To address this, a passive unilateral hip flexion-assisting orthosis (HFO) was developed that uses resistance bands spanning the hip joint to redirect energy in the gait cycle. The purpose of this study was to investigate the short-term effects of the HFO on gait mechanics and muscle activation for people with and without MS. We hypothesized that (1) hip flexion would increase in the limb wearing the device, and (2) that muscle activity would increase in hip extensors, and decrease in hip flexors and plantar flexors. Methods Five healthy subjects and five subjects with MS walked for minute-long sessions with the device using three different levels of band stiffness. We analyzed peak hip flexion and extension angles, lower limb joint work, and muscle activity in eight muscles on the lower limbs and trunk. Single-subjects analysis was used due to inter-subject variability. Results For subjects with MS, the HFO caused an increase in peak hip flexion angle and a decrease in peak hip extension angle, confirming our first hypothesis. Healthy subjects showed less pronounced kinematic changes when using the device. Power generated at the hip was increased in most subjects while using the HFO. The second hypothesis was not confirmed, as muscle activity showed inconsistent results, however several subjects demonstrated increased hip extensor and trunk muscle activity with the HFO. Conclusions This exploratory study showed that the HFO was well-tolerated by healthy subjects and subjects with MS, and that it promoted more normative kinematics at the hip for those with MS. Future studies with longer exposure to the HFO and personalized assistance parameters are needed to understand the efficacy of the HFO for mobility assistance and rehabilitation for people with MS.


2021 ◽  
Vol 11 (6) ◽  
pp. 1780-1788
Author(s):  
Habaxi Kaken ◽  
Shanshan Wang ◽  
Wei Zhao ◽  
Baoerjiang Asihaer ◽  
Li Wang

This article studies the effects of arthroscopic imaging treatment and clinical rehabilitation of knee sports injuries. Arthroscopy was used to perform meniscus trimming and resection for 40 patients with knee sports injuries. The ages of the patients ranged from 20 to 60 years old. All patients received routine rehabilitation training such as continuous passive motion of the knee joint, biofeedback of the lower limbs, and air pressure therapy of the lower limbs. In addition, the control group was given muscle strength training, and the training began after the patients received the quadriceps muscle strength test. The removal of the joint cavity and the joint debridement has achieved satisfactory treatment results. In the experiment, the test cases were divided into two groups, and the sensor test platform was used for signal collection. Normal activities can be resumed 2 weeks after the operation. After a follow-up of 6 to 24 months, the knee joint pain disappeared, the joint was free of swelling, and the knee function was normal up to 93%. Arthroscopic reconstruction of the anterior and posterior cruciate ligament joint repair/reconstruction of the medial and posterolateral ligament knots is safe and feasible for the treatment of multiple ligament injuries of the knee joint. It has the advantages of less trauma and quick recovery. Early postoperative systemic and standardized rehabilitation exercises can obtain good knee joint function.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2452
Author(s):  
Ana Cecilia Villa-Parra ◽  
Jessica Lima ◽  
Denis Delisle-Rodriguez ◽  
Laura Vargas-Valencia ◽  
Anselmo Frizera-Neto ◽  
...  

The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients’ gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.


Author(s):  
Ihssan S. Masad ◽  
Sami Almashaqbeh ◽  
Othman Smadi ◽  
Mariam Abu Olaim ◽  
Abeer Obeid

The purpose of this work is to investigate the effect of anteriorly-added mass to simulate pregnancy on lower extremities kinematic and lumbar and thoracic angles during stair ascending and descending. 18 healthy females ascended and descended, with and without a pseudo-pregnancy sac of 12 kg (experimental and control groups, respectively), a costume-made wooden staircase while instrumented with 20 reflective markers placed on the lower extremities and the spine. The movements were captured by 12 infrared cameras surrounding the staircase. Tracked position data were exported to MATLAB to calculate the required joints angles. SPSS was used to compare the ascent and descent phases of control group, and to find if there are any significant differences between control and experimental groups in the ascent phase as well as in the descent phase. When comparing the ascent and descent phases of control group, data revealed a higher hip flexion during ascending and greater ankle planter-flexion and dorsiflexion, lumbar, and thoracic angles during descending; however, no significant difference was shown in the knee flexion angle between ascending and descending. Non-pregnant data showed greater maximum hip flexion and ankle dorsiflexion during stair ascending compared to simulated-pregnant group; while ankle planter-flexion, knee flexion, and lumbar angle were greater for simulated-pregnant status. During stair descending, non-pregnant group had greater minimum hip flexion and ankle dorsiflexion compared to simulated pregnant group; while ankle planter-flexion, knee flexion, and maximum hip flexion were greater for simulated-pregnant group. However, the lumbar and thoracic angles were found to be similar for simulated-pregnant and non-pregnant groups during stair descending. In conclusion, the current study revealed important kinematic modifications pregnant women adopt while ascending and descending stairs at their final stage of pregnancy to increase their stability.


Sign in / Sign up

Export Citation Format

Share Document