scholarly journals Full-Density Fused Deposition Modeling Dimensional Error as a Function of Raster Angle and Build Orientation: Large Dataset for Eleven Materials

2019 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Sherri Messimer ◽  
Tais Pereira ◽  
Albert Patterson ◽  
Maliha Lubna ◽  
Fabiano Drozda

This paper describes the collection of a large dataset (6930 measurements) on dimensional error in the fused deposition modeling (FDM) additive manufacturing process for full-density parts. Three different print orientations were studied, as well as seven raster angles ( 0 ∘ , 15 ∘ , 30 ∘ , 45 ∘ , 60 ∘ , 75 ∘ , and 90 ∘ ) for the rectilinear infill pattern. All measurements were replicated ten times on ten different samples to ensure a comprehensive dataset. Eleven polymer materials were considered: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), high-temperature PLA, wood-composite PLA, carbon-fiber-composite PLA, copper-composite PLA, aluminum-composite PLA, high-impact polystyrene (HIPS), polyethylene terephthalate glycol-enhanced (PETG), polycarbonate, and synthetic polyamide (nylon). The samples were ASTM-standard impact-testing samples, since this geometry allows the measurement of error on three different scales; the nominal dimensions were 3 . 25 mm thick, 63 . 5 mm long, and 12 . 7 mm wide. This dataset is intended to give engineers and product designers a basis for judging the accuracy and repeatability of the FDM process for use in manufacturing of end-user products.

Author(s):  
Sherri L. Messimer ◽  
Tais Rocha Pereira ◽  
Albert E. Patterson ◽  
Maliha Lubna ◽  
Fabiano O. Drozda

This report describes the collection of a large dataset (6930 measurement) on dimensional error in the fused deposition modeling (FDM) additive manufacturing process for full-density parts. Three different print orientations were studied, as well as seven raster angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) for the rectilinear infill pattern. All measurements were replicated ten times on ten different samples to ensure a comprehensive dataset. Eleven polymer materials were considered: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), high-temperature PLA, wood-composite PLA, carbon-fiber-composite PLA, copper-composite PLA, aluminum-composite PLA, high-impact polystyrene (HIPS), polyethylene terephthalate glycol-enhanced (PETG), polycarbonate, and synthetic polyamide (nylon). The samples were ASTM-standard impact testing samples, since this geometry allows the measurement of error on three different scales; the nominal dimensions were 3.25mm thick, 63.5mm long, and 12.7mm wide. This dataset is intended to give engineers and product designers a benchmark for judging the accuracy and repeatability of the FDM process for use in manufacturing of end-user products.


2014 ◽  
Vol 592-594 ◽  
pp. 400-404 ◽  
Author(s):  
Sandeep V. Raut ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Fused deposition modeling (FDM) is one of the thirty techniques of rapid prototyping methods that produce prototypes from polymer materials (natural or with different grades). Acrylonitrile butadiene styrene (ABS) is one of the good material among all polymer materials. It is used in the layer by layer manufacturing of the prototype which is in the semi-molten plastic filament form and built up on the platform from bottom to top. In FDM, one of the critical factor is to select the built up orientation of the model since it affects the different areas of the model like main material, support material, built up time, total cost per part and most important the mechanical properties of the part. In view of this, objective of the present study was to investigate the effect of the built-up orientation on the mechanical properties and total cost of the FDM parts. Experiments were carried out on STRATASYS FDM type rapid prototyping machine coupled with CATALYST software and ABS as main material. Tensile and Impact specimens were prepared as per the ASTM standard with different built-up orientation and in three geometrical axes. It can be concluded from the experimental analysis that built orientation has significant affect on the tensile, impact and total cost of the FDM parts. These conclusions will help the design engineers to decide on proper build orientation, so that FDM parts can be fabricated with good mechanical properties at minimum manufacturing cost.


2019 ◽  
Vol 64 ◽  
pp. 188-194 ◽  
Author(s):  
Irina Miloichikova ◽  
Angelina Bulavskaya ◽  
Yury Cherepennikov ◽  
Boris Gavrikov ◽  
Elisabetta Gargioni ◽  
...  

2015 ◽  
Vol 21 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Andrew Katz ◽  
Justin Nussbaum ◽  
Craig P Lusk ◽  
Nathan B Crane

Purpose – The purpose of this paper is to evaluate the use of a simple printed geometry to estimate mechanical properties (elastic modulus, yield strength) with inexpensive test equipment. Design/methodology/approach – Test geometry is presented that enables controlled strains with manual deformation and repeatable measurement of vibrational frequencies. This is tested with multiple fused deposition modeling (FDM) machines to assess measurement accuracy and repeatability. Printing orientation and some printing parameters are varied to assess the measurement sensitivity. Findings – The test methods show good correlation with manufacturer material specifications in the X-Y plane and reported elastic strain limits. It is also sensitive to printing orientation and printing parameters. Research limitations/implications – Further work is needed to assess the sensitivity of the method to particular defects and parameter errors expected in particular applications. Originality/value – This method supports process monitoring in production environments and inexpensive assessments of material properties for hobbyist and do-i- yourself users. While it is tested with FDM, it should be applicable to other additive manufacturing processes.


Author(s):  
Mohammad Shojib Hossain ◽  
David Espalin ◽  
Jorge Ramos ◽  
Mireya Perez ◽  
Ryan Wicker

Today, the use of material extrusion processes, like fused deposition modeling (FDM), in aerospace, biomedical science, and other industries, is gaining popularity because of the access to production-grade thermoplastic polymer materials. This paper focuses on how modifying process parameters such as build orientation, raster angle (RA), contour width (CW), raster width (RW), and raster-to-raster air gap (RRAG) can improve ultimate tensile strength (UTS), Young's modulus, and tensile strain. This was assessed using three methods: default, Insight revision, and visual feedback. On average, parameter modification through the visual feedback method improved UTS in all orientations, 16% in XYZ, 7% in XZY, and 22% in ZXY.


2020 ◽  
pp. 089270572094537
Author(s):  
Jaya Suteja ◽  
Hudiyo Firmanto ◽  
Arum Soesanti ◽  
Christian Christian

Previous researchers tried to improve the mechanical properties of 3D printed part by adding short or continuous, natural, or nonnatural fibers as the reinforcement for thermosetting or thermoplastic matrix. None of the research found in the literature incorporates continuous natural pineapple leaf fiber as the reinforcement for polylactic acid (PLA) matrix by using 3D printing. The objective of this research is to investigate the tensile strength, the elongation, and the dimensional error of the 3D printed parts made of continuous pineapple leaf fiber-reinforced PLA composite using different values of extrusion temperature and feed rate. The experiment involves 32 factorial design with two replications and, therefore, prints 18 tensile test specimens according to ASTM D638. Based on the result of the experiment, it can be concluded that the use of continuous pineapple leaf fiber as the reinforcement for the PLA matrix increases the tensile strength of the composite. The use of continuous pineapple leaf fiber does not increase the dimensional error value of the composite part beyond the maximum value of the common fused deposition modeling printed part. Moreover, the required time to print the composite part is the same as the required time to print the pure PLA part. However, the elongation of the composite part is lower than the pure PLA part.


Author(s):  
Andre Espach ◽  
Kapil Gupta

Fused deposition modeling (FDM) is one of the important additive layer manufacturing techniques, used to fabricate products from heated polymer materials. Like other manufacturing processes, sustainability interventions are desirable in FDM to attain energy and resource efficiency simultaneously with good product quality. This paper reports the results of investigation conducted by the authors on effect of topology optimization strategy on quality of FDM parts and sustainability of the process. A total of eighteen experiments have been conducted by varying infill pattern and density at three levels each for optimized and unoptimized topology, based on Taguchi L18 technique. Statistical fitness of the data has been insured by ANOVA. Both infill density and pattern have been found the significant parameters. Better mechanical strength has been obtained for topology optimized FDM parts. A set of confirmation experiments have been conducted followed by quantification of sustainability and indicated that improved mechanical properties simultaneously with enhanced sustainability can be achieved via topology optimization in FDM process


Sign in / Sign up

Export Citation Format

Share Document