scholarly journals Numerical Simulations of Wave-induced Soil Erosion in Silty Sand Seabeds

2019 ◽  
Vol 7 (2) ◽  
pp. 52 ◽  
Author(s):  
Zhen Guo ◽  
Wenjie Zhou ◽  
Congbo Zhu ◽  
Feng Yuan ◽  
Shengjie Rui

Silty sand is a kind of typical marine sediment that is widely distributed in the offshore areas of East China. It has been found that under continuous actions of wave pressure, a mass of fine particles will gradually rise up to the surface of silty sand seabeds, i.e., the phenomenon called wave-induced soil erosion. This is thought to be due to the seepage flow caused by the pore-pressure accumulation within the seabed. In this paper, a kind of three-phase soil model (soil skeleton, pore fluid, and fluidized soil particles) is established to simulate the process of wave-induced soil erosion. In the simulations, the analytical solution for wave-induced pore-pressure accumulation was used, and Darcy flow law, mass conservation, and generation equations were coupled. Then, the time characteristics of wave-induced soil erosion in the seabed were studied, especially for the effects of wave height, wave period, and critical concentration of fluidized particles. It can be concluded that the most significant soil erosion under wave actions appears at the shallow seabed. With the increases of wave height and critical concentration of fluidized particles, the soil erosion rate and erosion degree increase obviously, and there exists a particular wave period that will lead to the most severe and the fastest rate of soil erosion in the seabed.

2015 ◽  
Vol 18 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Morteza Zanganeh ◽  
Abbas Yeganeh-Bakhtiary ◽  
Takao Yamashita

In this study, the adaptive network-based fuzzy inference system (ANFIS) and artificial neural network (ANN) were employed to estimate the wind- and wave-induced coastal current velocities. The collected data at the Joeutsu-Ogata coast of the Japan Sea were used to develop the models. In the models, significant wave height, wave period, wind direction, water depth, incident wave angle, and wind speed were considered as the input variables; and longshore and cross-shore current velocities as the output variables. The comparison of the models showed that the ANN model outperforms the ANFIS model. In addition, evaluation of the models versus the multiple linear regression and multiple nonlinear regression with power functions models indicated their acceptable accuracy. A sensitivity test proved the stronger effects of wind speed and wind direction on longshore current velocities. In addition, this test showed great effects of significant wave height on cross-shore currents' velocities. It was concluded that the angle of incident wave, water depth, and significant wave period had weaker influences on the velocity of coastal currents.


2011 ◽  
Vol 250-253 ◽  
pp. 1444-1447
Author(s):  
Youn Ju Jeong ◽  
Young Jun You ◽  
Yoon Koog Hwang

In this study, in order to verify wave induced buoyancy effects by wave conditions of wave height and period, experimental studies were conducted to the floating structures of pontoon type. A series of small-scale tests with various wave cases were performed to the pontoon models. Two small-scale pontoon models having different bottom details were fabricated and tested under the five different wave cases. Six hydraulic pressure gauges were attached on the bottom of pontoon models and wave induced hydraulic pressure was measured during the tests. Finally, hydraulic pressure subjected to the bottom of pontoon models were compared with each other. As the results of this study, it was found that wave induced hydraulic pressures at bottom were dependent on the wave period as well as wave height, and waffled bottom shape hardly influenced on wave induced hydraulic pressure.


2019 ◽  
Vol 7 (9) ◽  
pp. 317 ◽  
Author(s):  
Yang ◽  
Zhu ◽  
Liu ◽  
Sun ◽  
Ling ◽  
...  

To investigate the vertical migration response of fine sediments, the pore pressure response of the silty seabed under the action of waves was tested. Under the action of waves, there is an obvious pumping phenomenon in the sludge accumulated by pore pressure. The excess pore water pressure caused by the waves in the seabed is unevenly distributed with respect to depth and there is an extreme value of up to 1.19 kPa. The pressure affects the liquefaction properties of the sludge. According to instantaneous-liquefaction judgment, the liquefaction of surface soil occurs, but the soil is not completely liquefied. Using theoretical calculations, the vertical source supply of floating mud development was analyzed. The pumping effect of the wave-induced excess pore pressure manifests in two aspects, as follows: (1) The centralized migration of splitting channels, which is visible to the naked eye, and (2) the general migration of fine particles between particle gaps at the mesoscopic level, which accounts for up to 22.2% of the migration of fine particles.


2019 ◽  
Vol 7 (7) ◽  
pp. 237 ◽  
Author(s):  
Shaohua Wang ◽  
Pandi Wang ◽  
Hualing Zhai ◽  
Qibo Zhang ◽  
Linya Chen ◽  
...  

In this paper, the results of a series of experiments on wave-induced pore-water pressures around a mono-pile are presented. Unlike the previous study, in which the mono-pile was fully buried, the mono-pile in this study was installed at 0.6 m below the seabed surface. In this study, we focus on the pore-water pressures around the mono-pile and beneath the pile. The experimental results lead to the following conclusions: (1) the seabed response is more pronounced near the surface (in the region above 30 cm deep), and the rate of pore pressure attenuation gradually slows down. For the region below 0.3 m, the response is much smaller; (2) in general, along the surface of the pile, pore pressures increase as the wave height and wave period increase; (3) the spatial distribution of pore pressure near the pile will vary with different wave periods, while the wave height only has a significant effect on the amplitude; and (4) At z = −0.15 m, the pore pressure in front of the pile is the largest, while at the point 0.1 m below the bottom of the pile, the largest pore pressure occurs behind the pile.


2021 ◽  
Vol 9 (2) ◽  
pp. 160
Author(s):  
Changfei Li ◽  
Fuping Gao ◽  
Lijing Yang

Previous studies on wave-induced pore pressure in a porous seabed mainly focused on non-breaking regular waves, e.g., Airy linear waves or Stokes non-linear waves. In this study, breaking-wave induced pore pressure response in a sandy seabed was physically simulated with a large wave flume. The breaking-wave was generated by superimposing a series of longer waves onto the foregoing shorter waves at a specified location. Water surface elevations and the corresponding pore pressure in the process of wave breaking were measured simultaneously at three typical locations, i.e., at the rear, just at, and in front of the wave breaking location. Based on test results, characterization parameters are proposed for the wave surface elevations and the corresponding pore-pressures. Flume observations indicate that the wave height was greatly diminished during wave breaking, which further affected the pore-pressure responses. Moreover, the measured values of the characteristic time parameters for the breaking-wave induced pore-pressure are larger than those for the free surface elevation of breaking-waves. Under the action of incipient-breaking or broken waves, the measured values of the amplitude of transient pore-pressures are generally smaller than the predicted results with the analytical solution by Yamamoto et al. (1978) for non-breaking regular waves with equivalent values of characteristic wave height and wave period.


Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


2021 ◽  
Vol 11 (24) ◽  
pp. 11631
Author(s):  
Xiuwei Chai ◽  
Jingyuan Liu ◽  
Yu Zhou

This study is aimed at numerically investigating the cnoidal wave-induced dynamics characteristics and the liquefaction process in a loosely deposited seabed floor in a shallow water environment. To achieve this goal, the integrated model FSSI-CAS 2D is taken as the computational platform, and the advanced soil model Pastor–Zienkiewicz Mark III is utilized to describe the complicated mechanical behavior of loose seabed soil. The computational results show that a significant lateral spreading and vertical subsidence could be observed in the loosely deposited seabed floor due to the gradual loss of soil skeleton stiffness caused by the accumulation of pore pressure. The accumulation of pore pressure in the loose seabed is not infinite but limited by the liquefaction resistance line. The seabed soil at some locations could be reached to the full liquefaction state, becoming a type of heavy fluid with great viscosity. Residual liquefaction is a progressive process that is initiated at the upper part of the seabed floor and then enlarges downward. For waves with great height in shallow water, the depth of the liquefaction zone will be greatly overestimated if the Stokes wave theory is used. This study can enhance the understanding of the characteristics of the liquefaction process in a loosely deposited seabed under coastal shallow water and provide a reference for engineering activities.


Sign in / Sign up

Export Citation Format

Share Document