scholarly journals Development of Upwelling during the Sedimentary Period of the Organic-Rich Shales in the Wufeng and Longmaxi Formations of the Upper Yangtze Region and Its Impact on Organic Matter Enrichment

2019 ◽  
Vol 7 (4) ◽  
pp. 99 ◽  
Author(s):  
Shao-Ze Zhao ◽  
Yong Li ◽  
Hua-Jun Min ◽  
Tong Wang ◽  
Zhou Nie ◽  
...  

This study uses logging data, mineral component content, total organic carbon (TOC) content, and microscopic characteristics of the organic-rich shales in the Wufeng and Longmaxi Formations, as well as data reported by other researchers, to demonstrate that upwelling has played an important role in the organic matter enrichment. The results show that (1) the organic-rich shales of Well N211 in the Upper Yangtze region are located in the Wufeng Formation and the lower Longmaxi Formation, with a burial depth between 2308–2357 m. (2) The organic-rich shales are enriched in biogenic silica. (3) Based on paleogeographic location and characteristics of organisms, this study determines that upwelling occurred during the deposition of the organic-rich shales in the Wufeng and Longmaxi Formations, promoting the enrichment of organic matter in the shales. (4) The upwelling intensity gradually increased from the sedimentary period of the organic-rich shales in the mid-lower Wufeng Formation to the sedimentary period of the Guanyinqiao Member, and then decreased gradually from the sedimentary period of the Guanyinqiao Member to the sedimentary period of the organic-rich shales in the Longmaxi Formation, and leads to the different enrichment of organic matter in the vertical direction. The different developments of upwelling led to the coexistence of both high and low TOC contents in the Guanyinqiao Member along the vertical direction.

2017 ◽  
Vol 36 (5) ◽  
pp. 1295-1309 ◽  
Author(s):  
Wei Guo ◽  
Weijun Shen ◽  
Shangwen Zhou ◽  
Huaqing Xue ◽  
Dexun Liu ◽  
...  

Shales in the Well district of Yu 106 of the Shanxi Formation in the Eastern Ordos Basin is deposited in the swamp between delta plains, distributary river channels, natural levee, the far end of crevasse splay, and depression environments. According to organic geochemistry, reservoir physical property, gas bearing capacity, lithology experimental analysis, combined with the data of drilling, logging, testing and sedimentary facies, the reservoir conditions of shale gas and the distribution of an advantageous area in Shanxi Formation have been conducted. The results show that the total organic carbon content of the Shanxi Formation is relatively high, with an average content value of 5.28% in the segment 2 and 3.02% in segment 1, and the organic matter is mainly kerogen type II2 and III. The maturity of organic matter is high with 1.89% as the average value of Ro which indicates the superior condition for gas generation of this reservoir. The porosity of shales is 1.7% on average, and the average permeability is 0.0415 × 10−3 µm2. The cumulative thickness is relatively large, with an average of 75 m. Brittle mineral and clay content in shales are 49.9% and 50.1%, respectively, but the burial depth of shale is less than 3000 m. The testing gas content is relatively high (0.64 × 104 m3/d), which shows a great potential in commercial development. The total organic carbon of the segment 2 is higher than that of the segment 1, and it is also better than segment 1 in terms of gas content. Based on the thickness of shale and the distribution of sedimentary facies, it is predicted that the advantageous area of shale gas in the segment 2 is distributed in a striped zone along the northeast and the northsouth direction, which is controlled by the swamp microfacies between distributary river channels.


2014 ◽  
Vol 962-965 ◽  
pp. 51-54
Author(s):  
Zhi Feng Wang ◽  
Yuan Fu Zhang ◽  
Hai Bo Zhang ◽  
Qing Zhai Meng

The acquisition of the total organic carbon (TOC) content mainly relies on the geochemical analysis and logging data. Due to geochemical analysis is restricted by coring and experimental analysis, so it is difficult to get the continuous TOC data. Logging evaluation method for measuring TOC is very important for shale gas exploration. This paper presents a logging evaluation method that the shale is segmented according to sedimentary structures. Sedimentary structures were recognized by core, thin section and scanning electron microscope. Taking Wufeng-Longmaxi Formation, Silurian, Muai Syncline Belt, south of Sichuan Basin as research object, the shale is divided into three kinds: massive mudstone, unobvious laminated mudstone, and laminated mudstone. TOC within each mudstone are calculated using GR, resistivity and AC logging data, and an ideal result is achieved. This method is more efficient, faster and the vertical resolution is higher than △logR method.


2018 ◽  
Vol 36 (5) ◽  
pp. 1157-1171
Author(s):  
Agostinho Mussa ◽  
Deolinda Flores ◽  
Joana Ribeiro ◽  
Ana MP Mizusaki ◽  
Mónica Chamussa ◽  
...  

The Mozambique Basin, which occurs onshore and offshore in the central and southern parts of Mozambique, contains a thick sequence of volcanic and sedimentary rocks that range in age from the Jurassic to Cenozoic. This basin, along with the Rovuma basin to the north, has been the main target for hydrocarbon exploration; however, published data on hydrocarbon occurrences do not exist. In this context, the present study aims to contribute to the understanding of the nature of the organic matter of a sedimentary sequence intercepted by the Nemo-1X exploration well located in the offshore area of the Mozambique Basin. The well reached a depth of 4127 m, and 33 samples were collected from a depth of 2219–3676 m ranging in age from early to Late Cretaceous. In this study, petrographic and geochemical analytical methods were applied to assess the level of vitrinite reflectance and the organic matter type as well as the total organic carbon, total sulfur, and CaCO3 contents. The results show that the total organic carbon content ranges from 0.41 to 1.34 wt%, with the highest values determined in the samples from the Lower Domo Shale and Sena Formations, which may be related to the presence of the solid bitumens that occur in the carbonate fraction of those samples. The vitrinite random reflectances range from 0.65 to 0.86%Rrandom, suggesting that the organic matter in all of the samples is in the peak phase of the “oil generation window” (0.65–0.9%Rrandom). The organic matter is mainly composed of vitrinite and inertinite macerals, with a minor contribution of sporinite from the liptinite group, which is typical of kerogen type III. Although all of the samples have vitrinite reflectances corresponding to the oil window, the formation of liquid hydrocarbons is rather limited because the organic matter is dominated by gas-prone kerogen type III.


2015 ◽  
Vol 12 (4) ◽  
pp. 1073-1089 ◽  
Author(s):  
E. Gourdin ◽  
S. Huon ◽  
O. Evrard ◽  
O. Ribolzi ◽  
T. Bariac ◽  
...  

Abstract. The yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha−1), total organic carbon specific yield (8.3 kg C ha−1) and overland flow contribution (78–100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon specific yields were particularly high because they occurred during the first erosive storm of the rainy season, just after the period of slash-and-burn operations in the catchment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Carlos Eduardo Pacheco Lima ◽  
Mariana Rodrigues Fontenelle ◽  
Luciana Rodrigues Borba Silva ◽  
Daiane Costa Soares ◽  
Antônio Williams Moita ◽  
...  

The present work aimed to evaluate the behavior of ten fertility attributes of soil organic matter physical fractions and total organic carbon upon addition of three EM Bokashis to a Rhodic Ferralsol (FRr) and a Dystric Cambisol (CMd). An experiment was carried out in greenhouse in which the soils were placed into plastic trays and cultivated with tomato. A completely randomized design was used with four repetitions and factorial scheme of 2 × 3 + 2, consisting of two soils (FRr and CMd), three EM Bokashis (Poultry Manure Bokashi (BPM); CNPH Bokashi (BC); and Cattle Manure Bokashi (BCM)), and two controls (both soils without addition of Bokashi). The following fertility attributes were evaluated: pH, Ca2+, Mg2+, K+, Na+, P, SB, H + Al, CEC, andV. Particulate organic carbon (POC) and mineral-associated organic carbon (MOC) and total organic carbon (TOC) were also investigated. Finally, the Principal Component Analysis was conducted in order to identify possible patterns related to soils when fertilized with EM Bokashi. The addition of EM Bokashi increased the soil fertility and contents of POC. Different EM Bokashi presents distinguished effects on each soil. The PCA suggests that BPM presents higher capacity to modify the analyzed chemical attributes.


2019 ◽  
Author(s):  
Elizabeth Atar ◽  
Christian März ◽  
Andrew Aplin ◽  
Olaf Dellwig ◽  
Liam Herringshaw ◽  
...  

Abstract. The Kimmeridge Clay Formation (KCF) is a laterally extensive, total organic carbon-rich succession deposited throughout Northwest Europe during the Kimmeridgian–Tithonian (Late Jurassic). Here we present a petrographic and geochemical dataset for a 40 metre-thick section of a well-preserved drill core recovering thermally-immature deposits of the KCF in the Cleveland Basin (Yorkshire, UK), covering an interval of approximately 800 kyr. The new data are discussed in the context of depositional processes, sediment source and supply, transport and dispersal mechanisms, water column redox conditions, and basin restriction. Armstrong et al. (2016) recently postulated that an expanded Hadley Cell, with an intensified but alternating hydrological cycle, heavily influenced sedimentation and total organic carbon (TOC) enrichment, through promoting the primary productivity and organic matter burial, in the UK sectors of the Boreal Seaway. Consistent with such climate boundary conditions, petrographic observations, total organic carbon and carbonate contents, and major and trace element data presented here indicate that the KCF of the Cleveland Basin was deposited in the distal part of the Laurasian Seaway. Depositional conditions alternated between three states that produced a distinct cyclicity in the lithological and geochemical records: lower variability mudstone intervals (LVMIs) which comprise of clay-rich mudstone, TOC-rich sedimentation, and carbonate-rich sedimentation. The lower variability mudstone intervals dominate the studied interval but are punctuated by three ~ 2–4 m thick intervals of alternating TOC-rich and carbonate-rich sedimentation (here termed higher variability mudstone intervals, HVMIs). During the lower variability mudstone intervals, conditions were quiescent with oxic to sub-oxic bottom water conditions. During the higher variability mudstone intervals, highly dynamic conditions resulted in repeated switching of the redox system in a way similar to the modern deep basins of the Baltic Sea. During carbonate-rich sedimentation, oxic conditions prevailed, most likely due to elevated depositional energies at the seafloor by current/wave action. During TOC-rich sedimentation, anoxic-euxinic conditions led to an enrichment of redox sensitive/sulphide forming trace metals at the seafloor and a preservation of organic matter, and an active Mn-Fe particulate shuttle delivered redox sensitive/sulphide forming trace metals to the seafloor. In addition, based on TOC–S–Fe relationships, organic matter sulphurisation appears to have increased organic material preservation in about half of the analysed samples throughout the core, while the remaining samples were either dominated by excess Fe input into the system or experienced pyrite oxidation and sulphur loss during oxygenation events. New Hg/TOC data do not provide evidence of increased volcanism during this time, consistent with previous work. Set in the context of recent climate modelling, our study provides a comprehensive example of the dynamic climate-driven depositional and redox conditions that can control TOC and metal accumulations in the distal part of a shallow epicontinental sea, and is therefore key to understanding the formation of similar deposits throughout Earth's history.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


2020 ◽  
pp. 014459872097924
Author(s):  
Jingyi Wei ◽  
Yongli Wang ◽  
Gen Wang ◽  
Zhifu Wei ◽  
Wei He

Marine–continental transitional strata were widely developed in the Ordos Basin in Upper Carboniferous - Lower Permian. The Taiyuan - Shanxi Formation possesses promising shale gas exploration layers. Shale samples from two drilling wells of Shanxi-Taiyuan Formation in Shilou and Xixian, Ordos Basin, were investigated to study their carbon–sulfur contents and distribution characteristics of organic components using carbon/sulfur analyzer and gas chromatography–mass spectroscopy. Using results of total organic carbon analyses, Rock-Eval pyrolysis, X-ray diffraction analysis, shale gas desorption experiments, and other relevant experimental data, the shale samples were comprehensively analyzed. The exploitability of the shale in the study area was evaluated. The Shanxi-Taiyuan Shale in the Shilou and Xixian areas was characterized by high total organic carbon contents of 7.1% and 2.1% and high Tmax values of 499 and 505 °C, respectively. The organic matter of the shale is types II2 and III. Moreover, biomarker parameters including n-alkanes, Paq, Pwax, average carbon chain length, and the ternary diagram of C27-C28-C29 steranes show the organic matter constituted terrestrial higher plants and aquatic low biological algae. Multiple n-alkane parameters show the organic matter input in the Shilou area is mainly derived from terrestrial higher plants. The Pr/Ph value and trace element indicators show the deposition environment is dominated by weak oxidation–reduction conditions. A shale gas desorption experiment shows the average desorbed gas contents of the shale samples in the Shilou and Xixian areas were 1.79 and 0.37 m3/t, respectively. The organic matter content determined the differences in shale gas properties between the two areas in Ordos Basin. The composition and content of inorganic minerals affect the reservoir physical properties. According to the analyses, the shale in the Shilou area has good shale gas reservoir characteristics in terms of desorbed gas content and the above-mentioned geochemical parameters. Furthermore, the Shanxi shale has good potential for shale gas industrial exploitation.


1994 ◽  
Vol 30 (10) ◽  
pp. 179-187 ◽  
Author(s):  
I. T. Miettinen ◽  
P. J. Martikainen ◽  
T. Vartiainen

Transformations in the amount and quality of organic matter (humus) during bank filtration of surface water were studied by analyzing the changes in total organic carbon (TOC), non-purgeable organic carbon (NPOC), chemical oxygen demand (COD), color of water, and UV absorbing humus fractions. The amount of organic matter expressed as TOC, NPOC, and COD depended on temperature and filtration distance from lake water. The color of water and the UV absorbing humus peaks presenting different humus molecule fractions decreased more effectively than other parameters measuring the amount of organic matter in water. The ratio of COD to TOC decreased when the filtration distance of water increased. Our observations indicated that bank filtration of humus-rich lake water changed more the quality of organic matter than its total amount.


Sign in / Sign up

Export Citation Format

Share Document