scholarly journals A New Evaluation Method of Total Organic Carbon for Shale Source Rock Based on the Effective Medium Conductivity Theory

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.

2018 ◽  
Vol 36 (5) ◽  
pp. 1157-1171
Author(s):  
Agostinho Mussa ◽  
Deolinda Flores ◽  
Joana Ribeiro ◽  
Ana MP Mizusaki ◽  
Mónica Chamussa ◽  
...  

The Mozambique Basin, which occurs onshore and offshore in the central and southern parts of Mozambique, contains a thick sequence of volcanic and sedimentary rocks that range in age from the Jurassic to Cenozoic. This basin, along with the Rovuma basin to the north, has been the main target for hydrocarbon exploration; however, published data on hydrocarbon occurrences do not exist. In this context, the present study aims to contribute to the understanding of the nature of the organic matter of a sedimentary sequence intercepted by the Nemo-1X exploration well located in the offshore area of the Mozambique Basin. The well reached a depth of 4127 m, and 33 samples were collected from a depth of 2219–3676 m ranging in age from early to Late Cretaceous. In this study, petrographic and geochemical analytical methods were applied to assess the level of vitrinite reflectance and the organic matter type as well as the total organic carbon, total sulfur, and CaCO3 contents. The results show that the total organic carbon content ranges from 0.41 to 1.34 wt%, with the highest values determined in the samples from the Lower Domo Shale and Sena Formations, which may be related to the presence of the solid bitumens that occur in the carbonate fraction of those samples. The vitrinite random reflectances range from 0.65 to 0.86%Rrandom, suggesting that the organic matter in all of the samples is in the peak phase of the “oil generation window” (0.65–0.9%Rrandom). The organic matter is mainly composed of vitrinite and inertinite macerals, with a minor contribution of sporinite from the liptinite group, which is typical of kerogen type III. Although all of the samples have vitrinite reflectances corresponding to the oil window, the formation of liquid hydrocarbons is rather limited because the organic matter is dominated by gas-prone kerogen type III.


2019 ◽  
Vol 38 (3) ◽  
pp. 654-681 ◽  
Author(s):  
Lixin Mao ◽  
Xiangchun Chang ◽  
Youde Xu ◽  
Bingbing Shi ◽  
Dengkuan Gao

Previous studies on Chepaizi Uplift mainly focused on its reservoirs, and the potential source rocks natively occurred was ignored. During the exploration process, dark mudstones and tuffaceous mudstones were found in the Carboniferous interval. These possible source rocks have caused great concern about whether they have hydrocarbon generation potential and can contribute to the reservoirs of the Chepaizi Uplift. In this paper, the potential source rocks are not only evaluated by the organic richness, type, maturity, and depositional environment, but also divided into different kinetics groups. The Carboniferous mudstones dominated by Type III kerogen were evolved into the stage of mature. Biomarkers indicate that the source rocks were deposited in a marine environment under weakly reducing conditions and received mixed aquatic and terrigenous organic matter, with the latter being predominant. The effective source rocks are characterized by the total organic carbon values >0.5 wt.% and the buried depth >1500 m. The tuffaceous mudstone shows a greater potential for its lower active energy and longer hydrocarbon generation time. Considering the hydrocarbon generation potential, base limits of the total organic carbon and positive correlation of oil–source rock together, the native Carboniferous mudstones and tuffaceous mudstones might contribute to the Chepaizi Uplift reservoirs of the northwestern region of the Junggar Basin, especially the deeper effective source rocks should be paid enough attention to.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Liu ◽  
Xiaofeng Wang ◽  
Xiaofu Li ◽  
Ting Zhang ◽  
Wenhui Liu

It has been acknowledged that carbonate was identified as the source rocks of a series of oil-gas fields worldwide. For evaluating the carbonate source rocks, total organic carbon (TOC) contents act as an important indicator. However, the acid solution, which has been generated during conventional TOC measurements, contain organic matters. Hence, the released organic matters in acid solution during carbonate decomposition may lead to underestimate the hydorcarbon generation potential. In this study, rock-eval pyrolysis technique was applied to bulk rock and residue after acid treatment. Meanwhile, the organic matters in acid solution were measured by Gas Chromatography-Mass Spectrometer (GC-MS) to investigate the geochemical characteristics. In addition, the hydrocarbon generation and alteration of TOC contents of released organic matters by acid treatment were studied by hydrous pyrolysis experiments. The results show that the acid solution contains organic compounds, including n-alkanes, saturated fatty acids and fatty acid methyl esters. Meanwhile, total organic carbon (TOC) contents and hydrocarbon generation potential (S1+S2) significantly decrease for bulk rocks after acid treatment in low maturity samples. Moreover, organic CO2 (S3) decreased after treating of acid, revealing that acidolysis process can affect and release organic matters containing oxygen-bearing functional groups. The S1, S2, S3, and TOC loss are positive correlation with the proportion of rock loss during acidolysis, indicating that the organic matters in acid solution are associated with carbonate minerals. The organic fractions may exist as adsorption state on the surface of carbonate minerals and (or) exist as organic acid salts. Moreover, the thermal simulation experiments reveal that the organic matter in acid solution, which is not recovered by the conventional measurement approach, could contribute to hydrocarbon generation.


2020 ◽  
pp. 014459872094958
Author(s):  
Agostinho Mussa ◽  
Wolfgang Kalkreuth ◽  
Ana Maria Pimentel Mizusaki ◽  
Marleny Blanco González ◽  
Tais Freitas da Silva ◽  
...  

The Parnaiba Basin is a Paleozoic to Mesozoic intraplate volcano-sedimentary basin where the Pimenteiras Formation (Devonian) is the main sequence with potential of hydrocarbon generation, mostly natural gas. The present paper evaluates the potential of hydrocarbon generation of Pimenteiras Formation based on Total Organic Carbon (TOC) and Rock-Eval pyrolysis parameters. In this work, 1077 shale samples of the Pimenteiras Formation distributed in 32 wells were evaluated. The TOC content varies between 0.1 to 4.7 wt.%, partially reflecting the accumulation and preservation rates of the organic matter in marine and coastal depositional environments controlled by regressive-transgressive cycles. The oxic and anoxic conditions vary significantly with deposition in this situation, which were evidenced by HI and OI variations through sample profiles. In the north and center of the basin, the Pimenteiras Formation has a higher potential for hydrocarbon generation relative to the south, probably due to higher anoxic conditions during deposition. The Hydrogen Index indicates the predominance of kerogen types II and III with minor occurrences of types I and IV. The Tmax values indicate general immature conditions and locally postmature, where the lowest temperatures represent the basin´s burial history, whereas the higher ones were influenced by igneous intrusions and thermogenic anomalies related to the Transbrasiliano Lineament. In addition, the excessive heat around the intrusions altered the Rock-Eval pyrolysis parameters as well as the type of organic matter, resulting in a relative increase of the kerogen types III and IV, which explains the great potential for gas generation in this basin.


2020 ◽  
Vol 206 ◽  
pp. 01017
Author(s):  
Yangbing Li ◽  
Weiqiang Hu ◽  
Xin Chen ◽  
Litao Ma ◽  
Cheng Liu ◽  
...  

Based on the comprehensive analysis of the characteristics of tight sandstone gas composition, carbon isotope, light hydrocarbons and source rocks in Linxing area of Ordos Basin, the reservoir-forming model of tight sandstone gas in this area is discussed. The study shows that methane is the main component of tight sandstone gas, with low contents of heavy hydrocarbons and non-hydrocarbons, mainly belonging to dry gas in the Upper Paleozoic in Linxing area. The values of δ13C1, δ13C2 and δ13C3 of natural gas are in the ranges of -45.6‰ ~ -32.9‰, -28.9‰ ~ -22.3‰ and -26.2‰~ -19.1‰, respectively. The carbon isotopic values of alkane gas show a general trend of positive carbon sequence. δ13C1 value is less than -30‰, with typical characteristics of organic genesis. There is a certain similarity in the composition characteristics of light hydrocarbons. The C7 series show the advantage of methylhexane, while the C5-7 series mainly shows the advantage of isoalkane. The tight sandstone gas in this area is mainly composed of mature coal-derived gas, containing a small amount of coal-derived gas and oil-type gas mixture. According to the mode of hydrocarbon generation, diffusion and migration of source rocks in Linxing area, the tight sandstone gas in the study area can be divided into three types of reservoir-forming assemblages: the upper reservoir type of the far-source type (upper Shihezi formation-shiqianfeng formation sandstone reservoir-forming away from source rocks), the upper reservoir type of the near-source type ( the Lower Shihezi formation sandstone reservoir-outside the source rock), and the self-storage type of the source type (Shanxi formation-Taiyuan formation source rock internal sand reservoir).


2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


1980 ◽  
Vol 20 (1) ◽  
pp. 68 ◽  
Author(s):  
D.M. McKirdy ◽  
A.J. Kantsler

Oil shows observed in Cambrian Observatory Hill Beds, intersected during recent stratigraphic drilling of SADME Byilkaoora-1 in the Officer Basin, indicate that oil has been generated within the basin. Shows vary in character from "light" oils exuding from fractures through to heavy viscous bitumen in vugs in carbonate rocks of a playa-lake sequence.The oils are immature and belong to two primary genetic families with some oils severely biodegraded. The less altered oils are rich in the C13 - C25 and C30 acyclic isoprenoid alkanes. Source beds within the evaporitic sequence contain 0.5 - 1.0% total organic carbon and yield up to 1900 ppm solvent-extractable organic matter. Oil-source rock correlations indicate that the oils originated within those facies drilled; this represents the first reported examples of non-marine Cambrian petroleum. The main precursor organisms were benthonic algae and various bacteria.Studies of organic matter in Cambrian strata from five other stratigraphic wells in the basin reveal regional variations in hydrocarbon source potential that relate to differences in precursor microbiota and/or depositional environment and regional maturation. Micritic carbonates of marine sabkha origin, located along the southeast margin of the basin, are rated as marginally mature to mature and good to prolific sources of oil. Further north and adjacent to the Musgrave Block, Cambrian siltstones and shales have low organic carbon values and hydrocarbon yields, and at best are only marginally mature. Varieties of organic matter recognised during petrographic studies of carbonates in the Officer Basin include lamellar alginite (alginite B) and "balls" of bitumen with reflectance in the range 0.2 to 1.4%.


2015 ◽  
Vol 12 (4) ◽  
pp. 1073-1089 ◽  
Author(s):  
E. Gourdin ◽  
S. Huon ◽  
O. Evrard ◽  
O. Ribolzi ◽  
T. Bariac ◽  
...  

Abstract. The yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha−1), total organic carbon specific yield (8.3 kg C ha−1) and overland flow contribution (78–100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon specific yields were particularly high because they occurred during the first erosive storm of the rainy season, just after the period of slash-and-burn operations in the catchment.


Sign in / Sign up

Export Citation Format

Share Document