scholarly journals Assessment of Several Ocean Reanalyzes about North Equatorial Current at 160° E

2020 ◽  
Vol 8 (9) ◽  
pp. 648
Author(s):  
Jiahao Wang ◽  
Kefeng Mao ◽  
Xi Chen

Three ocean reanalyzes including Simple Ocean Data Assimilation (SODA), Hybrid Coordinate Ocean Model, and the Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) analysis, and the Ocean General Circulation Model for the Earth Simulator (OFES) are assessed about their ability of depicting the structure of North Equatorial Current (NEC) at 160° E. We found that these products could reflect the structure of NEC relatively well at the whole section, but not at the single point through comparing their results with mooring and cruising measurement, and the OFES is the best choice to study mesoscale processes versus the other two reanalyzes through comparing their results with satellite measurement.

2009 ◽  
Vol 22 (20) ◽  
pp. 5541-5557 ◽  
Author(s):  
Yosuke Fujii ◽  
Toshiyuki Nakaegawa ◽  
Satoshi Matsumoto ◽  
Tamaki Yasuda ◽  
Goro Yamanaka ◽  
...  

Abstract The authors developed a system for simulating climate variation by constraining the ocean component of a coupled atmosphere–ocean general circulation model (CGCM) through ocean data assimilation and conducted a climate simulation [Multivariate Ocean Variational Estimation System–Coupled Version Reanalysis (MOVE-C RA)]. The monthly variation of sea surface temperature (SST) is reasonably recovered in MOVE-C RA. Furthermore, MOVE-C RA has improved precipitation fields over the Atmospheric Model Intercomparison Project (AMIP) run (a simulation of the atmosphere model forced by observed daily SST) and the CGCM free simulation run. In particular, precipitation in the Philippine Sea in summer is improved over the AMIP run. This improvement is assumed to stem from the reproduction of the interaction between SST and precipitation, indicated by the lag of the precipitation change behind SST. Enhanced (suppressed) convection tends to induce an SST drop (rise) because of cloud cover and ocean mixing in the real world. A lack of this interaction in the AMIP run leads to overestimating the precipitation in the Bay of Bengal in summer. Because it is recovered in MOVE-C RA, the overestimate is suppressed. This intensifies the zonal Walker circulation and the monsoon trough, resulting in enhanced convection in the Philippine Sea. The spurious positive correlation between SST and precipitation around the Philippines in the AMIP run in summer is also removed in MOVE-C RA. These improvements demonstrate the effectiveness of simulating ocean interior processes with the ocean model and data assimilation for reproducing the climate variability.


2019 ◽  
Vol 49 (5) ◽  
pp. 1141-1157 ◽  
Author(s):  
Patrick Wagner ◽  
Siren Rühs ◽  
Franziska U. Schwarzkopf ◽  
Inga Monika Koszalka ◽  
Arne Biastoch

AbstractTo model tracer spreading in the ocean, Lagrangian simulations in an offline framework are a practical and efficient alternative to solving the advective–diffusive tracer equations online. Differences in both approaches raise the question of whether both methods are comparable. Lagrangian simulations usually use model output averaged in time, and trajectories are not subject to parameterized subgrid diffusion, which is included in the advection–diffusion equations of ocean models. Previous studies focused on diffusivity estimates in idealized models but could show that both methods yield similar results as long as the deformations-scale dynamics are resolved and a sufficient amount of Lagrangian particles is used. This study compares spreading of an Eulerian tracer simulated online and a cloud of Lagrangian particles simulated offline with velocities from the same ocean model. We use a global, eddy-resolving ocean model featuring 1/20° horizontal resolution in the Agulhas region around South Africa. Tracer and particles were released at one time step in the Cape Basin and below the mixed layer and integrated for 3 years. Large-scale diagnostics, like mean pathways of floats and tracer, are almost identical and 1D horizontal distributions show no significant differences. Differences in vertical distributions, seen in a reduced vertical spreading and downward displacement of particles, are due to the combined effect of unresolved subdaily variability of the vertical velocities and the spatial variation of vertical diffusivity. This, in turn, has a small impact on the horizontal spreading behavior. The estimates of eddy diffusivity from particles and tracer yield comparable results of about 4000 m2 s−1 in the Cape Basin.


2008 ◽  
Vol 136 (8) ◽  
pp. 2999-3017 ◽  
Author(s):  
James A. Carton ◽  
Benjamin S. Giese

Abstract This paper describes the Simple Ocean Data Assimilation (SODA) reanalysis of ocean climate variability. In the assimilation, a model forecast produced by an ocean general circulation model with an average resolution of 0.25° × 0.4° × 40 levels is continuously corrected by contemporaneous observations with corrections estimated every 10 days. The basic reanalysis, SODA 1.4.2, spans the 44-yr period from 1958 to 2001, which complements the span of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA-40). The observation set for this experiment includes the historical archive of hydrographic profiles supplemented by ship intake measurements, moored hydrographic observations, and remotely sensed SST. A parallel run, SODA 1.4.0, is forced with identical surface boundary conditions, but without data assimilation. The new reanalysis represents a significant improvement over a previously published version of the SODA algorithm. In particular, eddy kinetic energy and sea level variability are much larger than in previous versions and are more similar to estimates from independent observations. One issue addressed in this paper is the relative importance of the model forecast versus the observations for the analysis. The results show that at near-annual frequencies the forecast model has a strong influence, whereas at decadal frequencies the observations become increasingly dominant in the analysis. As a consequence, interannual variability in SODA 1.4.2 closely resembles interannual variability in SODA 1.4.0. However, decadal anomalies of the 0–700-m heat content from SODA 1.4.2 more closely resemble heat content anomalies based on observations.


2021 ◽  
Vol 14 (5) ◽  
pp. 2781-2799
Author(s):  
Pengfei Wang ◽  
Jinrong Jiang ◽  
Pengfei Lin ◽  
Mengrong Ding ◽  
Junlin Wei ◽  
...  

Abstract. A high-resolution (1/20∘) global ocean general circulation model with graphics processing unit (GPU) code implementations is developed based on the LASG/IAP Climate System Ocean Model version 3 (LICOM3) under a heterogeneous-compute interface for portability (HIP) framework. The dynamic core and physics package of LICOM3 are both ported to the GPU, and three-dimensional parallelization (also partitioned in the vertical direction) is applied. The HIP version of LICOM3 (LICOM3-HIP) is 42 times faster than the same number of CPU cores when 384 AMD GPUs and CPU cores are used. LICOM3-HIP has excellent scalability; it can still obtain a speedup of more than 4 on 9216 GPUs compared to 384 GPUs. In this phase, we successfully performed a test of 1/20∘ LICOM3-HIP using 6550 nodes and 26 200 GPUs, and on a large scale, the model's speed was increased to approximately 2.72 simulated years per day (SYPD). By putting almost all the computation processes inside GPUs, the time cost of data transfer between CPUs and GPUs was reduced, resulting in high performance. Simultaneously, a 14-year spin-up integration following phase 2 of the Ocean Model Intercomparison Project (OMIP-2) protocol of surface forcing was performed, and preliminary results were evaluated. We found that the model results had little difference from the CPU version. Further comparison with observations and lower-resolution LICOM3 results suggests that the 1/20∘ LICOM3-HIP can reproduce the observations and produce many smaller-scale activities, such as submesoscale eddies and frontal-scale structures.


2018 ◽  
Vol 31 (20) ◽  
pp. 8463-8479 ◽  
Author(s):  
Yonggang Liu ◽  
W. Richard Peltier ◽  
Jun Yang ◽  
Yongyun Hu

The influence of continental topography on the initiation of a global glaciation (i.e., snowball Earth) is studied with both a fully coupled atmosphere–ocean general circulation model (AOGCM), CCSM3, and an atmospheric general circulation model (AGCM), CAM3 coupled to a slab ocean model. It is found that when the climate is very cold, snow cover over the central region of the Eurasian continent decreases when the atmospheric CO2 concentration ( pCO2) is reduced. In the coupled model, this constitutes a negative feedback due to the reduction of land surface albedo that counteracts the positive feedback due to sea ice expansion toward the equator. When the solar insolation is 94% of the present-day value, Earth enters a snowball state when pCO2 is ~35 ppmv. On the other hand, if the continents are assumed to be flat topographically (with the global mean elevation as in the more realistic present-day case), Earth enters a snowball state more easily at pCO2 = ~60 ppmv. Therefore, the presence of topography may increase the stability of Earth against descent into a snowball state. On the contrary, a snowball Earth is found to form much more easily when complex topography is present than when it is not in CAM3. This happens despite the fact that the mid- to high-latitude climate is much warmer (by ~10°C) when topography is present than when it is not. Analyses show that neglecting sea ice dynamics in this model prevents the warming anomaly in the mid- to high latitudes from being efficiently transmitted into the tropics.


2016 ◽  
Vol 46 (12) ◽  
pp. 3639-3660 ◽  
Author(s):  
Fan Wang ◽  
Yuanlong Li ◽  
Jianing Wang

AbstractThe surface circulation of the tropical Pacific Ocean is characterized by alternating zonal currents, such as the North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), South Equatorial Current (SEC), and South Equatorial Countercurrent (SECC). In situ measurements of subsurface moorings and satellite observations reveal pronounced intraseasonal variability (ISV; 20–90 days) of these zonal currents in the western tropical Pacific Ocean (WTPO). The amplitude of ISV is the largest within the equatorial band exceeding 20 cm s−1 and decreases to ~10 cm s−1 in the NECC band and further to 4–8 cm s−1 in the NEC and SECC. The ISV power generally increases from high frequencies to low frequencies and exhibits a peak at 50–60 days in the NECC, SEC, and SECC. These variations are faithfully reproduced by an ocean general circulation model (OGCM) forced by satellite winds, and parallel model experiments are performed to gain insights into the underlying mechanisms. It is found that large-scale ISV (>500 km) is primarily caused by atmospheric intraseasonal oscillations (ISOs), such as the Madden–Julian oscillation (MJO), through wind stress forcing. These signals are confined within 10°S–8°N, mainly as baroclinic ocean wave responses to ISO winds. For scales shorter than 200 km, ISV is dominated by ocean internal variabilities with mesoscale structures. They arise from the baroclinic and barotropic instabilities associated with the vertical and horizontal shears of the upper-ocean circulation. The ISV exhibits evident seasonal variation, with larger (smaller) amplitude in boreal winter (summer) in the SEC and SECC.


2007 ◽  
Vol 135 (11) ◽  
pp. 3785-3807 ◽  
Author(s):  
A. Bellucci ◽  
S. Masina ◽  
P. DiPietro ◽  
A. Navarra

Abstract In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.


2008 ◽  
Vol 21 (22) ◽  
pp. 6015-6035 ◽  
Author(s):  
James A. Carton ◽  
Anthony Santorelli

Abstract This paper examines nine analyses of global ocean 0-/700-m temperature and heat content during the 43-yr period of warming, 1960–2002. Among the analyses are two that are independent of any numerical model, six that rely on sequential data assimilation, including an ocean general circulation model, and one that uses four-dimensional variational data assimilation (4DVAR), including an ocean general circulation model and its adjoint. Most analyses show gradual warming of the global ocean with an ensemble trend of 0.77 × 108 J m−2 (10 yr)−1 (=0.24 W m−2) as the result of rapid warming in the early 1970s and again beginning around 1990. One proposed explanation for these variations is the effect of volcanic eruptions in 1963 and 1982. Examination of this hypothesis suggests that while there is an oceanic signal, it is insufficient to explain the observed heat content variations. A second potential cause of decadal variations in global heat content is the uncorrelated contribution of heat content variations in individual ocean basins. The subtropical North Atlantic is warming at twice the global average, with accelerated warming in the 1960s and again beginning in the late 1980s and extending through the end of the record. The Barents Sea region of the Arctic Ocean and the Gulf of Mexico have also warmed, while the western subpolar North Atlantic has cooled. Heat content variability in the North Pacific differs significantly from the North Atlantic. There the spatial and temporal patterns are consistent with the decadal variability previously identified through observational and modeling studies examining SST and surface winds. In the Southern Hemisphere large heat content anomalies are evident, and while there is substantial disagreement among analyses on average the band of latitudes at 30°–60°S contribute significantly to the global warming trend. Thus, the uncorrelated contributions of heat content variations in the individual basins are a major contributor to global heat content variations. A third potential contributor to global heat content variations is the effect of time-dependent bias in the set of historical observations. This last possibility is examined by comparing the analyses to the unbiased salinity–temperature–depth dataset and finding a very substantial warm bias in all analyses in the 1970s relative to the latter decades. This warm bias may well explain the rapid increase in analysis heat content in the early 1970s, but not the more recent increase, which began in the early 1990s. Finally, this study provides information about the similarities and differences between analyses that are independent of a model and those that use sequential assimilation and 4DVAR. The comparisons provide considerable encouragement for the use of the sequential analyses for climate research despite the presence of erroneous variability (also present in the no-model analyses) resulting from instrument bias. The strengths and weaknesses of each analysis need to be considered for a given application.


Sign in / Sign up

Export Citation Format

Share Document