scholarly journals Rational Evaluation Methods of Topographical Change and Building Destruction in the Inundation Area by a Huge Tsunami

2020 ◽  
Vol 8 (10) ◽  
pp. 762
Author(s):  
Sayed Masihullah Ahmadi ◽  
Yoshimichi Yamamoto ◽  
Vu Thanh Ca

In the case of huge tsunamis, such as the 2004 Great Indian Ocean Tsunami and 2011 Great East Japan Tsunami, the damage caused by ground scour is serious. Therefore, it is important to improve prediction models for the topographical change of huge tsunamis. For general models that predict topographical change, the flow velocity distribution of a flood region is calculated by a numerical model based on a nonlinear long wave theory, and the distribution of bed-load rates is calculated using this velocity distribution and an equation for evaluating bed-load rates. This bed-load rate equation usually has a coefficient that can be decided using verification simulations. For the purpose, Ribberink’s formula has high reproducibility within an oscillating flow and was chosen by the authors. Ribberink’s formula needs a bed-load transport coefficient that requires sufficient verification simulations, as it consumes plenty of time and money to decide its value. Therefore, the authors generated diagrams that can define the suitable bed-load coefficient simply using the data acquired from hydraulic experiments on a movable bed. Subsequently, for the verification purpose of the model, the authors performed reproduced simulations of topography changes caused by the 2011 Great East Japan Tsunami at some coasts in Northern Japan using suitable coefficients acquired from the generated diagrams. The results of the simulations were in an acceptable range. The authors presented the preliminary generated diagrams of the same methodology but with insubstantial experimental data at the time at the International Society of Offshore and Polar Engineers (ISOPE), (2018 and 2019). However, in this paper, an adequate amount of data was added to the developed diagrams based on many hydraulic experiments to further raise their reliability and their application extent. Furthermore, by reproducing the tsunami simulation on the Sendai Natori coast of Japan, the authors determined that the impact of total bed-load transport was much bigger than that of suspension loads. Besides, the simulation outputs revealed that the mitigation effect of the cemented sand and gravel (CSG) banks and artificial refuge hills reduced tsunami damage on Japan’s Hamamatsu coast. Since a lot of buildings and structures in the inundation area can be destroyed by tsunamis, building destruction design was presented in this paper through an economy and simplified state. Using the proposed tsunami simulation model, we acquired the inundation depth at any specific time and location within the inundated area. Because the inundation breadth due to a huge tsunami can extend kilometers toward the inland area, the evaluation of building destruction is an important measure to consider. Therefore, the authors in this paper presented useful threshold diagrams to evaluate building destruction with an easy and cost-efficient state. The threshold diagrams of “width of a pillar” for buildings or “width of concrete block walls” not breaking to each inundation height were developed using the data of damages due to the 2011 Great East Japan Tsunami.

2018 ◽  
Vol 40 ◽  
pp. 02010 ◽  
Author(s):  
Kenneth Lockwood ◽  
Patrick Grover ◽  
Ana Maria Ferreira da Silva

There is disagreement in the literature as to whether a shear stress-based approach can be used to accurately predict sediment transport over dunes. This study aims to address this disagreement. To this end, use is made of an experiment involving the study of naturally formed, fully developed dunes produced in a laboratory flume. The bed shear stress is estimated through a combination of velocity, Reynolds stress measurements, and results of a CFD RANS rough wall model. The validity of using Bagnold’s equation to predict the bed-load rate is subsequently analyzed. In contrast to what has been previously suggested by some authors, it is found from the present experiment that the bed-load rate correlates well with the bed shear stress, and that Bagnold’s equation yields realistic values of the bed-load rate over the stoss side of the dune downstream of the reattachment point. This work also highlights the difficulties in reliably estimating the bed shear stress in complex flows. Such difficulties are overcome in this paper through a combination of flow velocity measurements and modeled results.


2014 ◽  
Vol 70 (10) ◽  
pp. 1695-1701 ◽  
Author(s):  
Isa Ebtehaj ◽  
Hossein Bonakdari

The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

2016 ◽  
Vol 142 (5) ◽  
pp. 04016003 ◽  
Author(s):  
Carlos R. Wyss ◽  
Dieter Rickenmann ◽  
Bruno Fritschi ◽  
Jens M. Turowski ◽  
Volker Weitbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document