scholarly journals CICE-LETKF Ensemble Analysis System with Application to Arctic Sea Ice Initialization

2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Xiying Liu ◽  
Zicheng Sha ◽  
Chenchen Lu

To study the effectiveness of methods to reduce errors for Arctic Sea ice initialization due to underestimation of background error covariance, an advanced ensemble analysis system has been developed. The system integrates the local ensemble transform Kalman filter (LETKF) with the community ice code (CICE). With a mixed layer ocean model used to compute the sea surface temperature (SST), the experiments on assimilation of observations of sea ice concentration (SIC) have been carried out. Assimilation experiments were performed over a 3-month period from January to March in 1997. The model was sequentially constrained with daily observation data. The effects of observation density, amplification factor for analysis error covariance, and relaxation of disturbance and spread on the results of SIC initialization were studied. It is shown that doubling the density of observation of SIC does not bring significant further improvement on the analysis result; when the ensemble size is doubled, most severe SIC biases in the Labrador, Greenland, Norwegian, and Barents seas are reduced; amplifying the analysis error covariance, relaxing disturbance, and relaxing spread all contribute to improving the reproduction of SIC with amplifying covariance with the largest magnitude.

2021 ◽  
Author(s):  
Harry Heorton ◽  
Michel Tsamados ◽  
Paul Holland ◽  
Jack Landy

<p><span>We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations</span><span>. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice</span><span>. Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.</span></p>


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2019 ◽  
Vol 77 (2) ◽  
pp. 723-751 ◽  
Author(s):  
Wenqi Zhang ◽  
Dehai Luo

Abstract In this paper, the impact of winter Arctic sea ice concentration (SIC) decline over Baffin Bay, Davis Strait, and Labrador Sea (BDL) on Greenland blocking (GB) is first examined. It is found that the GB has a longer duration, a more notable westward movement, and a larger zonal scale in the low SIC winter than in the high SIC winter. In particular, the decay of GB may become slower than its growth in the low SIC winter, but the reverse is seen in the high SIC winter. The GB in the low SIC winter can have a more important impact on cold anomalies over North American midlatitudes than in the high SIC winter because of its slower decay and stronger retrogression. The influence of large BDL SIC loss on the GB mainly through reduced meridional potential vorticity gradient (PVy) related to reduced zonal winds over the North Atlantic mid- to high latitudes (NAMH) due to BDL warming is further examined by using the nonlinear phase speed and energy dispersion speed formula of blocking based on a nonlinear wave packet theory of atmospheric blocking. In this theory, the preexisting synoptic-scale eddies rather than the eddy straining or deformation is important for the blocking intensification and maintenance, which contradicts the eddy straining theory of Shutts. It is revealed from this theoretical model that under weaker NAMH zonal wind conditions the energy dispersion speed of GB may become smaller due to weaker PVy during its decaying phase than during the blocking growing phase, in addition to the GB having larger negative phase speed and stronger nonlinearity. The opposite is true when the PVy is larger. Thus, under a large SIC loss condition the GB shows notable retrogression, large zonal scales, and a long lifetime, which has a slower decay than its growth.


2019 ◽  
Vol 21 (10) ◽  
pp. 1642-1649 ◽  
Author(s):  
Keyhong Park ◽  
Intae Kim ◽  
Jung-Ok Choi ◽  
Youngju Lee ◽  
Jinyoung Jung ◽  
...  

Dimethyl sulfide (DMS) production in the northern Arctic Ocean has been considered to be minimal because of high sea ice concentration and extremely low productivity.


Sign in / Sign up

Export Citation Format

Share Document