scholarly journals Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae

2021 ◽  
Vol 7 (3) ◽  
pp. 237
Author(s):  
Mohammad Sayari ◽  
Magrieta A. van der Nest ◽  
Emma T. Steenkamp ◽  
Saleh Rahimlou ◽  
Almuth Hammerbacher ◽  
...  

Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katarzyna Kozłowicz ◽  
Renata Różyło ◽  
Bożena Gładyszewska ◽  
Arkadiusz Matwijczuk ◽  
Grzegorz Gładyszewski ◽  
...  

Abstract This work aimed at the chemical and structural characterization of powders obtained from chestnut flower honey (HFCh) and honey with Inca berry (HBlu). Honey powders were obtained by spray drying technique at low temperature (80/50 °C) with dehumidified air. Maltodextrin (DE 15) was used as a covering agent. The isolation and evaluation of phenolic compounds and sugars were done by gas chromatography–mass spectrometry analysis. Scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction were performed to determine the morphology of the studied honey powders. The obtained results showed that the content of simple sugars amounted to 72.4 and 90.2 g × 100 g−1 in HFCh and HBlu, respectively. Glucose was found to be the dominant sugar with a concentration of 41.3 and 51.6 g × 100 g−1 in HFCh and HBlu, respectively. 3-Phenyllactic acid and ferulic acid were most frequently found in HFCh powder, whereas m-coumaric acid, benzoic acid, and cinnamic acid were the most common in HBlu powder. The largest changes in the FTIR spectra occurred in the following range of wavenumbers: 3335, 1640, and below 930 cm−1. The X-ray diffraction profiles revealed wide peaks, suggesting that both honey powders are amorphous and are characterized by a short-range order only.


Holzforschung ◽  
2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Chi-Hsiang Wen ◽  
Yen-Hsueh Tseng ◽  
Fang-Hua Chu

Abstract In the present study, one sesquiterpene synthase gene in Eleutherococcus trifoliatus was identified and characterized. Full-length cDNA was obtained from stems. It contained an open reading frame of 1671 bp (EtCop) with a predicted molecular mass of 64.5 kDa. The amino acid sequence of EtCop contained the common terpene synthase family motifs RR(x)8W, RxR and DDxxD. The recombinant protein from Escherichia coli was incubated with farnesyl diphosphate in order to identify the function of EtCop. The product of EtCop could be identified as an α-copaene by means of gas chromatography-mass spectrometry analysis and comparison with an authentic standard.


Author(s):  
Hima Bindu Bssn ◽  
Rajesh Kumar Munaganti ◽  
Vijayalakshmi Muvva ◽  
Krishna Naragani ◽  
Mani Deepa Indupalli

Objectives: Optimization, isolation, and characterization of bioactive compounds from Streptomyces lavendulocolor VHB-9 isolated from granite mines of Mudigonda village of Khammam district of Telangana state.Methods: The potent strain was identified as S. lavendulocolor VHB-9 by polyphasic taxonomy. The influence of culture conditions on growth and bioactive compounds production was investigated. Purification of bioactive compounds was done using column chromatography. The structures of the compounds were elucidated on the basis of spectroscopic analysis including Fourier transform infrared, electron spray ionization mass spectrophotometry,1H nuclear magnetic resonance (NMR), and13C NMR. The antimicrobial activity of the compounds produced by the strain was tested against both Gram-positive and Gram-negative bacteria and fungi in terms of minimum inhibitory concentration.Results: Isolation and identification of two compounds, namely (2R, 3R)-2, 3-Butanediol (B1A), and nonadecanoic acid (B1B). Fraction B4 was isolated partially purified fraction and identified by the gas chromatography-mass spectrometry analysis. B1B compound exhibited the highest activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans when compared to B1A and B4 compounds.


2008 ◽  
Vol 74 (13) ◽  
pp. 4044-4053 ◽  
Author(s):  
Ralf Kellmann ◽  
Troco Kaan Mihali ◽  
Young Jae Jeon ◽  
Russell Pickford ◽  
Francesco Pomati ◽  
...  

ABSTRACT Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document