scholarly journals Using Genealogical Concordance and Coalescent-Based Species Delimitation to Assess Species Boundaries in the Diaporthe eres Complex

2021 ◽  
Vol 7 (7) ◽  
pp. 507
Author(s):  
Sandra Hilário ◽  
Micael F. M. Gonçalves ◽  
Artur Alves

DNA sequence analysis has been of the utmost importance to delimit species boundaries in the genus Diaporthe. However, the common practice of combining multiple genes, without applying the genealogical concordance criterion has complicated the robust delimitation of species, given that phylogenetic incongruence between loci has been disregarded. Despite the several attempts to delineate the species boundaries in the D. eres complex, the phylogenetic limits within this complex remain unclear. In order to bridge this gap, we employed the Genealogical Phylogenetic Species Recognition principle (GCPSR) and the coalescent-based model Poisson Tree Processes (PTPs) and evaluated the presence of recombination within the D. eres complex. Based on the GCPSR principle, presence of incongruence between individual gene genealogies, i.e., conflicting nodes and branches lacking phylogenetic support, was evident. Moreover, the results of the coalescent model identified D. eres complex as a single species, which was not consistent with the current large number of species within the complex recognized in phylogenetic analyses. The absence of reproductive isolation and barriers to gene flow as well as the high haplotype and low nucleotide diversity indices within the above-mentioned complex suggest that D. eres constitutes a population rather than different lineages. Therefore, we argue that a cohesive approach comprising genealogical concordance criteria and methods to detect recombination must be implemented in future studies to circumscribe species in the genus Diaporthe.

MycoKeys ◽  
2019 ◽  
Vol 52 ◽  
pp. 17-43
Author(s):  
Irena Petrželová ◽  
Michal Sochor

The phylogentic diversity of the genus Morchella has only been sporadically studied in Central Europe. In this study, a molecular taxonomic revision of the Morchella species of the Czech Republic was performed using available fungarium specimens, fresh collections, and axenic cultures. Molecular phylogenetic analyses based on either ITS or five-locus (ITS, LSU, RPB1, RPB2, and EF-1α) sequencing and the application of principles of the genealogical concordance phylogenetic species recognition (GCPSR) have revealed the occurrence of 11 phylogenetic species in the region, but only six of them could be assigned unequivocally to the previously published phylospecies: Mel-3 (M.semilibera), Mel-10 (M.importuna), Mel-19 (M.eohespera), Mes-4 (M.americana), Mes-5 and Mes-8 (M.esculenta). One lineage was identified as a new phylospecies and is designated as Mel-39. Four lineages grouped together with two or more previously published phylospecies: Mel-13/26 (M.deliciosa), Mel-15/16 (M.angusticeps / M.eximioides), Mel-20/34 (M.purpurascens), and Mel-23/24/31/32 (M.pulchella). Our phylogenetic analyses and literature review shed light on the pitfalls of current molecular taxonomy of morels and highlight the ambiguities of present species recognition concepts. The main source of the problems seems to be rooted in the application of different methods (multigene vs single-gene sequencing, phenotypic determination) and approaches (monophyly vs paraphyly, the application or not of GCPSR, degree of differentiation between accepted species, etc.) by various authors for the delimitation of new phylospecies. Therefore, we propose five criteria for distinguishing new phylospecies in the genus Morchella based on molecular data, and recommend a more conservative approach in species delimitation.


Phytotaxa ◽  
2021 ◽  
Vol 524 (4) ◽  
pp. 283-292
Author(s):  
XINGGUO TIAN ◽  
SAMANTHA C. KARUNARATHNA ◽  
AUSANA MAPOOK ◽  
JIANCHU XU ◽  
DANFENG BAO ◽  
...  

A new species of Koorchaloma is described based on morphology and multigene phylogenetic analyses of ITS, LSU and RPB2. Phylogenetic analyses showed our strain clusters with K. europaea with moderate statistical support. Koorchaloma oryzae sp. nov. is morphologically similar to K. europaea, but it can be distinguished by the conidiophores and conidia, while ITS pairwise nucleotide comparison of these two species also revealed differences. Koorchaloma oryzae is compared with all known Koorchaloma species, and a key to Koorchaloma species is provided. Genealogical concordance phylogenetic species recognition analysis (PHI test) results of the new species and closely related species are also given.


Phytotaxa ◽  
2018 ◽  
Vol 336 (1) ◽  
pp. 43 ◽  
Author(s):  
MILAN C. SAMARAKOON ◽  
YUSUFJON GAFFOROV ◽  
NINGGUO LIU ◽  
SAJEEWA S. N. MAHARACHCHIKUMBURA ◽  
JAYARAMA D. BHAT ◽  
...  

The genus Coniochaeta is an important ascomycete because its members live in diversified habitats and nutritional modes. In this study, two new species, C. acaciae and C. coluteae, are introduced from dead branches of Acacia sp. and Colutea paulsenii Freyn (both Fabaceae) respectively from Uzbekistan, based on morphological and phylogenetic studies. Analyses of combined ITS and LSU sequence data with Genealogical Concordance Phylogenetic Species Recognition (GCPSR) and comparison of similar taxa, provide evidences for placement of these new species in Coniochaeta, as distinct lineages.


2021 ◽  
Vol 58 (04) ◽  
pp. 1301-1313
Author(s):  
Imran Ul Haq

Neopestalotiopsis species are known to be involved in plant diseases as associated pathogens. The taxonomic identification of the fungal group Neopestalotiopsisis little bit difficult due to its complex evolutionary history. In the present study, seven fungal isolates were investigated from canker-affected guava plants. The phylogeny for generic placement of these isolates was analyzed to validate them as Neopestalotiopsis genus by phylogenetic signals from the 28S nrRNA region (LSU). Generated morphological data was segregated as new morpho-species of the Neopestalotiopsis genus. Hence, the internal transcribed spacer (ITS), Translation elongation factor 1-α (TEF1-α) and Tubulin (TUB) genic region of these isolates were studied in juxtaposition with morphological data to resolve species limits. Both phylogenetic and morphological data revealed four novel species of the Neopestalotiopsis genus out of seven isolates studied. These Neopestalotiopsis species could be of great significance for further investigation as putative pathogens associated with canker or scabby canker disease in guava.


2020 ◽  
Vol 6 (4) ◽  
pp. 371
Author(s):  
Josué J. da Silva ◽  
Beatriz T. Iamanaka ◽  
Larissa S. Ferranti ◽  
Fernanda P. Massi ◽  
Marta H. Taniwaki ◽  
...  

Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 175 ◽  
Author(s):  
Ria T. Villafana ◽  
Sephra N. Rampersad

The Fusarium incarnatum-equiseti species complex (FIESC) consists of 33 phylogenetic species according to multi-locus sequence typing (MLST) and Genealogical Concordance Phylogenetic Species Recognition (GCPSR). A multi-locus dataset consisting of nucleotide sequences of the translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1), and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish among phylogenetic species within the FIESC isolates infecting bell pepper in Trinidad. Three phylogenetic species belonged to the Incarnatum clade (FIESC-15, FIESC-16, and FIESC-26), and one species belonged to the Equiseti clade (FIESC-14). Specific MLST types were sensitive to 10 µg/mL of tebuconazole fungicide as a discriminatory dose. The EC50 values were significantly different among the four MLST groups, which were separated into two homogeneous groups: FIESC-26a and FIESC-14a, demonstrating the “sensitive” azole phenotype and FIESC-15a and FIESC-16a as the “less sensitive” azole phenotype. CYP51C sequences of the Trinidad isolates, although under positive selection, were without any signatures of recombination, were highly conserved, and were not correlated with these azole phenotypes. CYP51C sequences were unable to resolve the FIESC isolates as phylogenetic inference indicated polytomic branching for these sequences. This data is important to different research communities, including those studying Fusarium phytopathology, mycotoxins, and public health impacts.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ana Obradović ◽  
Jelena Stepanovic ◽  
Vesna Krnjaja ◽  
Aleksandra Bulajic ◽  
Goran Stanković ◽  
...  

The cosmopolitan species Fusarium graminearum Schwabe directly reduces yield, as well as grain quality of cereals, due to its ability to synthesize mycotoxins. Previously it was considered to be one species occurring on all continents. However, phylogenetic analysis employing the GCPSR method (Genealogical Concordance Phylogenetic Species Recognition) revealed the existence of 15 phylogenetic species within what is now recognised as the Fusarium graminearum Species Complex (FGSC) (Sarver et al. 2011). During 1996-2008, a MRIZP collection of FGSC isolates was established and isolates originating from wheat (5), maize (3) and barely (2) were selected for further study. Morphological features including the appearance of colonies and macroconidia (average size 38.5-53.1 × 4.6-5.4 µm, No 50) of all 10 isolates on PDA were consistent with descriptions of F. graminearum (O’Donnell et al. 2004, Leslie and Summerell 2006). Total DNA was isolated from mycelium removed from 7-day old colonies of single-spore isolates grown on PDA using the DNeasy Plant Mini Kit (Qiagen, Hilden). Further identification was based on amplification and sequencing of elongation factor TEF−1α, histone H3 and β−tubulin in both directions, with primers ef1/ef2, H3-1a/H3-1b and T1/T22, respectively (Jacobs et al. 2010). The sequences were deposited in NCBI under accession numbers MF974399 - MF974408 (TEF−1α), MG063783 - MG063792 (β−tubulin) and MF999139 - MF999148 (histone H3). Sequence analysis was performed using BLAST while genetic similarity was calculated using MEGA 6.0 software. Isolate 1339 originating from wheat (collected at the locality of Kikinda in 2006), shared 100% nucleotide identity with TEF−1α (DQ459745), histone H3 (DQ459728) and β−tubulin (DQ459643) of F. vorosii isolate NRRL37605 (Starkey et al. 2007). The remaining nine isolates were identified as F. graminearum as they shared 99% to 100% nucleotide similarity with F. graminearum NRRL 28439 (O’Donnell et al. 2004). Pathogenicity was tested using artificial inoculations of spikes during wheat flowering (Mesterhazy et al. 1999). Thirty classes were inoculated with each isolate, in three replicates. Inoculum was prepared from 7-day colonies on PDA, and 30 ml of a conidia suspension (1x105 conidia/ml) was used. Control plants were inoculated with sterile water. Three weeks after inoculation, typical Fusarium head blight symptoms were visible on inoculated plants, from which all 10 isolates were successfully reisolated. Control spikes remained symptomless. Disease severity was estimated on the 1-7 scale (Blandino et al. 2012). Average pathogenicity of the F. vorosii isolate 1339 was 1.9, and 2.4 -5.1 of F. graminearum isolates. Toxin production was determined using gas chromatography-tandem mass spectrometry. Kernels inoculated with the 10 isolates were ground and tested for the presence of deoxynivalenol (DON) and its acetyl derivatives 3ADON, 15ADON and NIV. F. vorosii isolate 1339 possessed the 15ADON chemotype, as well as eight F. graminearum isolates, while only one F. graminearum isolate was 3ADON chemotype. To date, F. vorosii has only been detected in Hungary on wheat (Toth et al. 2005) and Korea on barley, corn and rice (Lee et al. 2016). This is the first report of F. vorosii in Serbia, which is of great importance, because it indicates the spread of this toxigenic species. Further studies should be focused on determining the distribution, aggressiveness and toxicological profile of F. vorosii.


2014 ◽  
Vol 118 (4) ◽  
pp. 374-384 ◽  
Author(s):  
Matthew H. Laurence ◽  
Brett A. Summerell ◽  
Lester W. Burgess ◽  
Edward C.Y. Liew

Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2123-2136 ◽  
Author(s):  
K. W. T. Chethana ◽  
Y. Zhou ◽  
W. Zhang ◽  
M. Liu ◽  
Q. K. Xing ◽  
...  

Grape white rot is a common disease and causes considerable yield losses in many grape-growing regions when environmental conditions are favorable. We surveyed grape white rot in five provinces in China and collected 27 isolates from diseased grape tissues. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS1-5.8S-ITS2), the 28S large subunit of nuclear ribosomal RNA (LSU), partial translation elongation factor 1-alpha gene (TEF 1-α), and partial histone 3 gene (HIS), coupled with genealogical concordance phylogenetic species recognition and morphological observations, revealed that Coniella vitis sp. nov. and C. diplodiella are the causal agents of grape white rot in China. Koch’s postulates were performed on Vitis vinifera cv. Summer Black in a greenhouse. These results confirmed the pathogenicity on grapes, as symptoms were reproduced, and also indicated significant variations in the virulence among C. vitis isolates. This work provides evidence that C. vitis is the main pathogen of grape white rot in China and also provides an optimized multigene backbone for resolving Coniella species.


Sign in / Sign up

Export Citation Format

Share Document