scholarly journals Histoplasma capsulatum Isolated from Tadarida brasiliensis Bats Captured in Mexico Form a Sister Group to North American Class 2 Clade

2021 ◽  
Vol 7 (7) ◽  
pp. 529
Author(s):  
Tania Vite-Garín ◽  
Daniel A. Estrada-Bárcenas ◽  
David S. Gernandt ◽  
María del Rocío Reyes-Montes ◽  
Jorge H. Sahaza ◽  
...  

Histoplasma capsulatum is a dimorphic fungus associated with respiratory and systemic infections in mammalian hosts that have inhaled infective mycelial propagules. A phylogenetic reconstruction of this pathogen, using partial sequences of arf, H-anti, ole1, and tub1 protein-coding genes, proposed that H. capsulatum has at least 11 phylogenetic species, highlighting a clade (BAC1) comprising three H. capsulatum isolates from infected bats captured in Mexico. Here, relationships for each individual locus and the concatenated coding regions of these genes were inferred using parsimony, maximum likelihood, and Bayesian inference methods. Coalescent-based analyses, a concatenated sequence-types (CSTs) network, and nucleotide diversities were also evaluated. The results suggest that six H. capsulatum isolates from the migratory bat Tadarida brasiliensis together with one isolate from a Mormoops megalophylla bat support a NAm 3 clade, replacing the formerly reported BAC1 clade. In addition, three H. capsulatum isolates from T. brasiliensis were classified as lineages. The concatenated sequence analyses and the CSTs network validate these findings, suggesting that NAm 3 is related to the North American class 2 clade and that both clades could share a recent common ancestor. Our results provide original information on the geographic distribution, genetic diversity, and host specificity of H. capsulatum.

2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


1993 ◽  
Vol 125 (5) ◽  
pp. 847-867 ◽  
Author(s):  
Yves Alarie

AbstractNorth American members of the Oreodyies alaskanus clade are revised. The species O. productotruncatus (Hatch) and O. recticollis (Fall) are recognized as valid and those names are removed from junior synonymy with O. alaskanus (Fall.). Oreodytes leechi Zimmerman is considered a new junior subjective synonym of O. recticollis. Lectotype designations are provided for O. alaskanus and O. recticollis. Palaearctic O. dauricus (Motschulsky) is included within the O. alaskanus clade whose members are characterized by the protibia having the inner margin sinuate and strongly narrowed proximally, Oreodytes kanoi Kamiya, from Japan, is suggested as the sister-group of members of the O. alaskanus clade based on the shared presence in the female of a last abdominal sternite with an emargination at the apex.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


2016 ◽  
Vol 90 (2) ◽  
pp. 288-304 ◽  
Author(s):  
Juan Liu ◽  
Mark V.H. Wilson ◽  
Alison M. Murray

AbstractFossil catostomids were very rare prior to the Eocene. After the Eocene, they suddenly decreased in diversity in Asia while becoming common fishes in the North American fauna. Knowledge of the taxonomy, diversity, and distribution of Eocene catostomids is critical to understanding the evolution of this fish group. We herein describe a new catostomid species of the genus †AmyzonCope, 1872 from the Eocene Kishenehn Formation in Montana, USA. The new species, †Amyzon kishenehnicum, differs from known species of †Amyzonin having hypurals 2 and 3 consistently fused to the compound centrum proximally, and differs from other Eocene catostomids in that the pelvic bone is intermediately forked. All our phylogenetic analyses suggest that the new species is the sister group of †A.aggregatumWilson, 1977 and that †Amyzonis the most basal clade of the Catostomidae. We reassessed the osteological characters of the North American species of †Amyzonfrom a large number of well-preserved specimens of the new species, as well as †A.gosiutenseGrande et al., 1982 and †A.aggregatum. Osteological characters newly discovered indicate that †A.gosiutenseis not a junior synonym of †A.aggregatum, but should be retained as a distinct species.


Botany ◽  
2008 ◽  
Vol 86 (9) ◽  
pp. 1039-1064 ◽  
Author(s):  
Stephen R. Downie ◽  
Deborah S. Katz-Downie ◽  
Feng-Jie Sun ◽  
Chang-Shook Lee

Intergeneric phylogenetic relationships within Apiaceae tribe Oenantheae were investigated using sequence data from the chloroplast DNA psbI–5′trnK(UUU) and nuclear ribosomal DNA internal transcribed spacer regions. One hundred and thirty-one accessions were examined, representing all 17 genera of the tribe and approximately one-half of its species. The cpDNA region includes four intergenic spacers and the rps16 intron and these noncoding loci were analyzed separately to assess their relative utility for resolving relationships. Separate maximum parsimony analyses of the entire psbI–5′trnK(UUU) and ITS regions, each with and without scored indels, yielded concordant trees. Phylogenies derived from maximum parsimony, Bayesian, or maximum likelihood analyses of combined chloroplast and nuclear DNA sequences for 82 accessions were highly resolved, well supported, and consistent. Among the five noncoding loci examined, the trnQ(UUG)–5′rps16 and 3′rps16–5′trnK(UUU) intergenic spacers are the most variable, with the latter contributing the greatest total number of parsimony informative characters relative to its size. The North American genera Atrema , Cynosciadium , Daucosma , Limnosciadium , Neogoezia , Oxypolis , Ptilimnium , and Trepocarpus ally with the western hemispheric and Australasian genus Lilaeopsis in a strongly supported North American Endemics clade that is a sister group to a clade composed primarily of Old World taxa ( Berula sensu lato, Cryptotaenia , Helosciadium , and Sium ). Oxypolis and Ptilimnium are not monophyletic, with the rachis-leaved members of each comprising a clade separate from their compound-leaved congeners. Dispersal-vicariance analysis suggests that the ancestors of the North American Endemics clade probably originated in Canada and the USA or in a broader ancestral area including Mexico and South America.


2011 ◽  
Vol 25 (4) ◽  
pp. 334 ◽  
Author(s):  
Joel Ledford ◽  
Pierre Paquin ◽  
James Cokendolpher ◽  
Josh Campbell ◽  
Charles Griswold

A phylogenetic analysis of the spider genus Neoleptoneta Brignoli, 1972 is presented based on molecular sequence variation from three genes (mitochondrial cytochrome c oxidase subunit I, nuclear histone H3 and nuclear 28S rDNA) and including exemplars for all North American leptonetid genera except the ecribellate archoleptonetine Darkoneta. Analysis of concatenated data and independent genes using Bayesian, maximum likelihood and parsimony methods failed to recover Neoleptoneta as monophyletic. The genera Archoleptoneta, Appaleptoneta and Calileptoneta are monophyletic and a sister group relationship is supported between Appaleptoneta and Calileptoneta. Morphological data based on a survey of leptonetid genera using scanning electron and compound light microscopy are discussed and traced on the molecular phylogeny. Images for each North American leptonetine genus are provided, including comparison with Asian and European outgroups. Images of the incertae sedis species Leptoneta brunnea Gertsch, 1974 and Leptoneta sandra Gertsch, 1974 are provided and their generic placement is re-evaluated. Ancestral state reconstruction is used to assess patterns of cave evolution and shows that most species are descended from troglophilic ancestors and that troglobites have evolved at least nine times independently within the North American Leptonetidae. Neoleptoneta is relimited to include seven species restricted to central Mexico including N. bonita (Gertsch, 1974), N. capilla (Gertsch, 1971), N. delicata (Gertsch, 1971), N. limpida (Gertsch, 1974), N. rainesi (Gertsch, 1971) and N. reclusa (Gertsch, 1971) and to include Leptoneta brunnea, giving the new combination N. brunnea (Gertsch, 1974). The remaining species described in Neoleptoneta are placed in three new genera: (1) Chisoneta, gen. nov. from south-western Texas and Nuevo Leon, Mexico, including the four species C. chisosea (Gertsch, 1974), C. isolata (Gertsch, 1971), C. modica (Gertsch, 1974) and C. pecki (Gertsch, 1971), new combinations; (2) Ozarkia, gen. nov. from Arizona and New Mexico north-east to Arkansas, Alabama and Georgia, including the nine species O. alabama (Gertsch, 1974), O. apachea (Gertsch, 1974), O. archeri (Gertsch, 1974), O. arkansa (Gertsch, 1974), O. blanda (Gertsch, 1974), O. georgia (Gertsch, 1974), O. ivei (Gertsch, 1974), O. novaegalleciae (Brignoli, 1979) and O. serena (Gertsch, 1974), new combinations; and (3) Tayshaneta, gen. nov. from Texas south to Coahuila, Mexico, with the eleven species T. anopica (Gertsch, 1974), T. bullis (Cokendolpher, 2004), T. coeca (Chamberlin & Ivie, 1942), T. concinna (Gertsch, 1974), T. devia (Gertsch, 1974), T. furtiva (Gertsch, 1974), T. microps (Gertsch, 1974), T. myopica (Gertsch, 1974), T. paraconcinna (Cokendolpher & Reddell, 2001), T. uvaldea (Gertsch, 1974) and T. valverdae (Gertsch, 1974), new combinations. Leptoneta sandra Gertsch, 1974 cannot be placed in any North American, European or Asian genus and is thus transferred to the new genus Montanineta, gen. nov., giving the new combination Montanineta sandra (Gertsch, 1974).


2013 ◽  
Vol 118 (2) ◽  
pp. 344-349 ◽  
Author(s):  
Natalia Kraeva ◽  
Elena Zvaritch ◽  
Wanda Frodis ◽  
Olga Sizova ◽  
Alexander Kraev ◽  
...  

Abstract Background Malignant hyperthermia (MH, MIM# 145600) is a complex pharmacogenetic disorder that is manifested in predisposed individuals as a potentially lethal reaction to volatile anesthetics and depolarizing muscle relaxants. Studies of CASQ1-null mice have shown that CASQ1, encoding calsequestrin 1, the major Ca2+ binding protein in the lumen of the sarcoplasmic reticulum, is a candidate gene for MH in mice. The aim of this study was to establish whether the CASQ1 gene is associated with MH in the North American population. Methods The entire coding region of CASQ1 in 75 unrelated patients diagnosed by caffeine-halothane contracture test as MH susceptible (MHS) was analyzed by DNA sequencing. Subsequently, three groups of unrelated individuals (130 MHS, 100 MH negative, and 192 normal controls) were genotyped for a variant that was identified by sequencing. Levels of CASQ1 expression in the muscle from unrelated MHS and MH negative individuals were estimated by Western blotting. Results Screening of the entire coding sequence of the CASQ1 gene in 75 MHS patients revealed a single variant c.260T > C (p.Met87Thr) in exon 1. This variant is unlikely to be pathogenic, because its allele frequency in the MHS group was not significantly different from that of controls. There was also no difference in calsequestrin 1 protein levels between muscle samples from MHS and controls, including those carrying the p.Met87Thr variant. Conclusions This study revealed a low level of protein coding sequence variability within the human CASQ1 gene, indicating that CASQ1 is not a major MHS locus in the North American population.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 786
Author(s):  
Paul S. Manos ◽  
Andrew L. Hipp

The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the white oaks), the two largest sections of subgenus Quercus. We also distill emerging evolutionary and biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple species complexes and instances of hybridization.


Sign in / Sign up

Export Citation Format

Share Document