scholarly journals Response of Fungal Diversity, Community Composition, and Functions to Nutrients Management in Red Soil

2021 ◽  
Vol 7 (7) ◽  
pp. 554
Author(s):  
Muhammad Atif Muneer ◽  
Xiaoman Huang ◽  
Wei Hou ◽  
Yadong Zhang ◽  
Yuanyang Cai ◽  
...  

Soil fungi play a critical role in plant performance and soil nutrient cycling. However, the understanding of soil fungal community composition and functions in response to different nutrients management practices in red soils remains largely unknown. Here, we investigated the responses of soil fungal communities and functions under conventional farmer fertilization practice (FFP) and different nutrient management practices, i.e., optimization of NPK fertilizer (O) with soil conditioner (O + C), with lime and mushroom residue (O + L + M), and with lime and magnesium fertilizer (O + L + Mg). Illumina high-throughput sequencing was used for fungal identification, while the functional groups were inferred with FUNGuild. Nutrient management practices significantly raised the soil pH to 4.79–5.31 compared with FFP (3.69), and soil pH had the most significant effect (0.989 ***) on fungal communities. Predominant phyla, including Ascomycota, Basidiomycota, and Mortierellomycota were identified in all treatments and accounted for 94% of all fungal communities. The alpha diversity indices significantly increased under nutrients management practices compared with FFP. Co-occurrence network analysis revealed the keystone fungal species in the red soil, i.e., Ascomycota (54.04%), Basidiomycota (7.58%), Rozellomycota (4.55%), and Chytridiomycota (4.04%). FUNGuild showed that the relative abundance of arbuscular mycorrhizal fungi and ectomycorrhizal fungi was higher, while pathogenic fungi were lower under nutrient management practices compared with FFP. Our findings have important implications for the understanding of improvement of acidic soils that could significantly improve the soil fungal diversity and functioning in acidic soils.

2021 ◽  
Vol 9 (7) ◽  
pp. 1385
Author(s):  
Muhammad Waqqas Khan Tarin ◽  
Lili Fan ◽  
Dejin Xie ◽  
Muhammad Tayyab ◽  
Jundong Rong ◽  
...  

Soil fungi play a vital role in soil nutrient dynamics, but knowledge of their diversity and community composition in response to biochar addition into red soil is either limited or inconsistent. Therefore, we determined the impact of bamboo biochar (BB) with increasing concentrations (0, 5, 20, and 80 g kg−1 of soil, referred to as B0, BB5, BB20, and BB80, respectively) on soil physicochemical properties and fungal communities (Illumina high-throughput sequencing) in red soil under Fokenia hodginsii (Fujian cypress). We found that increasing BB levels effectively raised the soil pH and soil nutrients, particularly under BB80. BB addition significantly increased the relative abundance of important genera, i.e., Basidiomycota, Mucoromycota, and Chytridiomycota that could play a key role in ecological functioning, e.g., wood degradation and litter decomposition, improvement in plant nutrients uptake, and resistance to several abiotic stress factors. Soil amended with BB exhibited a substantial ability to increase the fungal richness and diversity; BB80 > BB20 > BB5 > B0. Basidiomycota, Mucoromycota, Glomeromycota, Rozellomycota, Aphelidiomycota, Kickxellomycota, and Planctomycetes were positively associated with soil pH, total nitrogen, phosphorous, and carbon, and available potassium and phosphorous. Besides, the correlation analysis between the soil fungal communities and soil properties also showed that soil pH was the most influential factor in shaping the soil fungal communities in the red soil. These findings have significant implications for a comprehensive understanding of how to ameliorate acidic soils with BB addition, as well as for future research on sustainable forest management, which might increase soil fungi richness, diversity, and functionality in acidic soils.


2021 ◽  
Author(s):  
Rasmus Kjoller ◽  
Carla Cruz-Paredes

<p>Soil pH is consistently recorded as the single most important variable explaining bacterial richness and community composition locally as globally. Bacterial richness responds to soil pH in a bell-shaped pattern, highest in soils with near-neutral pH, while lower diversity is found in soil with pH >8 and <4.5. Also, community turnover is strongly determined by pH for bacteria. In contrast, pH effects on fungi is apparently less pronounced though also much less studied compared to bacteria. Still, pH appears to be a significant determinant for fungal communities but typically not the most important. Rarely are bacterial and fungal communities co-analyzed from the same field samples taken across pH gradients. Here we analyze the community responses of fungi and bacteria in parallel over an extreme pH gradient ranging from pH 4 to 8 established by applying strongly alkaline wood ash to replicated plots in a Picea abies plantation. Bacterial and fungal community composition were assessed by amplicon-based meta-barcoding. Bacterial richness were not significantly affected by pH, while fungal richness and a-diversity were stimulated with higher pH. We found that both, bacterial and fungal communities increasingly deviated from the untreated plots with increasing amount of wood ash though fungal communities were more resistant to changes than bacterial. Soil NH<sub>4</sub>, NO<sub>3</sub> and pH significantly correlated with the NMDS pattern for both bacterial and fungal communities. In the presentation we will discuss resistance versus sensitivity of different fungal functional guilds towards higher pH as well as the underlying factors explaining the community changes.</p>


2020 ◽  
Vol 10 (16) ◽  
pp. 5681
Author(s):  
Xiaodi Liu ◽  
Zengwei Feng ◽  
Yang Zhou ◽  
Honghui Zhu ◽  
Qing Yao

Both liming and plant residue incorporation are widely used practices for the amelioration of acidic soils—however, the difference in their effects is still not fully understood, especially regarding the microbial community. In this study, we took the acidic soils from a subtropical orchard as target soils, and implemented liming and plant residue incorporation with a leguminous and a gramineous cover crop as test plants. After six months of growth, soil pH, total organic carbon (TOC), dissolved organic carbon (DOC) and nutrient contents were determined, soil enzymes involving C, N, P cycling were assayed, and microbial communities were also analyzed using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results showed that liming was more effective in elevating soil pH, while plant residue incorporation exerted a more comprehensive influence—not only on soil pH, but also on soil enzyme activity and microbial community. PCR-DGGE analysis revealed that liming changed the microbial community structure more greatly than plant residue incorporation, while plant residue incorporation altered the microbial community composition much more than liming. The growth responses of test plants to liming and plant residue incorporation depended on plant species, indicating the necessity to select appropriate practice for a particular crop. A further, detailed investigation into the microbial community composition, and the respective functions using metagenomic approach, is also suggested.


2006 ◽  
pp. 3-8
Author(s):  
Jakab Loch

Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.


Author(s):  
Kaire Loit ◽  
Liina Soonvald ◽  
Alar Astover ◽  
Eve Runno-Paurson ◽  
Maarja Öpik ◽  
...  

The rhizosphere fungal community can play an important role in determining plant growth and health. In this study, using high-throughput sequencing, we investigated the fungal diversity and community composition in the roots and rhizosphere soil of 21 potato (Solanum tuberosum L.) cultivars. The samples were collected at three different sampling points. Furthermore, we assessed the differences in both diversity and composition of pathogen and saprotroph communities. In soil and roots, the fungal richness and relative abundance of pathogens and saprotrophs were mainly affected by sampling time. However, root fungal communities were also significantly affected by cultivar. The most substantial effect of cultivar was on root pathogen diversity. Moreover, the occurrence of most pathogens strongly varied among cultivars. Soil fungal community composition was primarily determined by sampling time; whereas in roots, the primary determinant was cultivar. Our results demonstrate changes in fungal communities over the potato growing season, as well as highlight the importance of potato cultivar on root fungal communities, and emphasise their importance in plant breeding.


2021 ◽  
Vol 2 ◽  
Author(s):  
Stefanie Hoeber ◽  
Christel Baum ◽  
Martin Weih ◽  
Stefano Manzoni ◽  
Petra Fransson

Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype (“Loden”) on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Zhang ◽  
Hongyu Cao ◽  
Peishan Zhao ◽  
Xiaoshuai Wei ◽  
Guodong Ding ◽  
...  

Revegetation is regarded as an effective means to improve the ecological environment in deserts and profoundly influences the potential ecological functions of the soil fungal community. Therefore, Illumina high-throughput sequencing was performed to characterize the soil fungal diversity and community composition at two soil depths (0–10 cm and 10–20 cm) with four revegetation durations (natural grassland, half-mature, nearly mature, and mature Pinus. sylvestris var. mongolica plantations) in the Mu Us Sandy Land, China. The effects of soil properties on soil fungal communities were also examined to reveal the connection between fungal function and soil environment. The results indicated that 1) soil nutrient content and enzyme activity showed significant differences through the restoration durations, 2) there was no significant effect of soil depth on soil fungal diversity, while the Shannon diversity index of all fungal communities was significantly different among different revegetation durations, 3) compared with grassland, ectomycorrhizal fungi (notably, Inocybe, Tuber, and Calostoma) were abundant in plantations. The endophyte fungus Mortierella was among the top 10 genera in all soil samples and arbuscular mycorrhizal fungus Diversispora was the indicator genus of the grassland, and 4) catalase and total nitrogen were the main factors affecting fungal community composition and were closely related to saprotrophs and pathotrophs, respectively. This new information indicates the variation of soil fungal communities along revegetation durations and highlights the interaction between fungal functions and desert ecosystems.


2020 ◽  
Vol 1 (2) ◽  
pp. 64-73
Author(s):  
Biplov Oli ◽  
Sushil Lamichhane ◽  
Khem Oli

Mapping the spatial distribution of soil fertility in a particular area gives an idea about the nutrient content in the soil which plays an im-portant role in fertilizer recommendation, sustainable soil manage-ment, integrated plant nutrient management, landuse planning, and site-specific nutrient management (SSNM). A study was carried out to assess the soil fertility status of the Rapti Municipality, Chitwan, Ne-pal. A total of 120 soil samples was collected based on land use, slope, and aspects with the useof Google Earth Pro (GEP) and ArcGIS. Based on the soil test report spatial variation of soil texture, soil pH, total nitrogen, available phosphorous, and potassium of the study area was prepared. The majority of the study area (57.11%) has sandy clay soils. The soil pH was very strongly acidic to slightly alkaline with pH values ranging from 4.8 to 8.0. Soil organic matter (1.94-3.75%), total nitrogen (0.097-0.187%), available phosphorous(51.03-270.10 kgha-1), and available potassium (169.87-358.68 kgha-1) in the soil are within the range of medium to high in the study area. To maintain this nutrient status, the use of organic manure, reduced use of chemical fertilizers, and different soil management practices should be adopted in this area.


2018 ◽  
Vol 6 (3) ◽  
pp. 337-343
Author(s):  
Deepak Ghimire ◽  
Bandhu Raj Baral ◽  
Dinesh Panday

A proper understanding of variability of soil chemical properties over an area is important for identifying the soil nutrients related production constraints. The suggestions for remedial measures and execution of appropriate nutrient management strategies are also based on the good knowledge of variation in soil nutrients. A case study was undertaken with an objective of assessing spatial variability of selected soil chemical properties of agricultural land. Soil samples from the surface (0 to 15 cm) were collected from farmers’ field in the central part of Kavrepalanchowk district of Nepal in February 2018. Soil samples were analyzed for soil pH, total organic carbon (TOC), total nitrogen (N), phosphorous (P), and potassium (K). Descriptive statistics revealed that the soil in the study area was slightly acidic and contained the low status of TOC, P, and K, while the N content was medium. Coefficient of variation (CV) indicated that soil pH was the least variable (CV= 9.37% with values ranging from 5.3 to 7.7) among the investigated soil samples while N was the most variable (CV= 98.81% with content values ranging from 0.03% to 0.67%). Other selected properties (TOC, P, and K) were found to be highly variable (CV= 49.94%, 94.89%, and 57.53% respectively). These variations in soil chemical properties were mostly related to the different cropping systems and soil management practices, including nutrient management carried out in the study area. Owing to the higher variability of nutrients, the results suggested to take into account various soil and nutrient management practices for sustained soil fertility and enhanced productivity.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Sign in / Sign up

Export Citation Format

Share Document