scholarly journals Timing of Resource Addition Affects the Migration Behavior of Wood Decomposer Fungal Mycelia

2021 ◽  
Vol 7 (8) ◽  
pp. 654
Author(s):  
Yu Fukasawa ◽  
Koji Kaga

Studies of fungal behavior are essential for a better understanding of fungal-driven ecological processes. Here, we evaluated the effects of timing of resource (bait) addition on the behavior of fungal mycelia when it remains in the inoculum and when it migrates from it towards a bait, using cord-forming basidiomycetes. Experiments allowed mycelium to grow from an inoculum wood across the surface of a soil microcosm, where it encountered a new wood bait 14 or 98 d after the start of growth. After the 42-d colonization of the bait, inoculum and bait were individually moved to a dish containing fresh soil to determine whether the mycelia were able to grow out. When the inoculum and bait of mycelia baited after 14 d were transferred to new soil, there was 100% regrowth from both inoculum and bait in Pholiota brunnescens and Phanerochaete velutina, indicating that no migration occurred. However, when mycelium was baited after 98 d, 3 and 4 out of 10 replicates of P. brunnescens and P. velutina, respectively, regrew only from bait and not from inoculum, indicating migration. These results suggest that prolonged periods without new resources alter the behavior of mycelium, probably due to the exhaustion of resources.

2019 ◽  
Vol 9 ◽  
Author(s):  
Lateef Babatunde Salam ◽  
Oluwafemi Sunday Obayori

Understanding the intricate link between the soil microbiota and their metabolic functions is important for agricultural and ecological processes and could be used as a biomarker of soil health. To understand the relationship between soil microbial community structure and functions, a soil microcosm designated 2S (agricultural soil) was set up. Metagenomic DNA was extracted from the soil microcosm and sequenced using Miseq Illumina next generation sequencing and analysed for their structural and functional properties. Structural analysis of the soil microcosm by MG-RAST revealed 40 phyla, 78 classes, 157 orders, 273 families and 750 genera. <em>Actinobacteria</em> (54.0%) and <em>Proteobacteria </em>(17.5%) are the dominant phyla while <em>Conexibacter</em> (8.38%), <em>Thermoleophilum</em> (7.40%), and <em>Streptomyces</em> (4.14%) are the dominant genera. Further assignment of the metagenomics using Cluster of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI’s CDD revealed diverse metabolic pathways utilized by the microbial community for the metabolism of carbohydrates, amino acids, lipids, biosynthesis of secondary metabolites and resistance to antibiotics. Taxonomic analysis of the annotated genes also revealed the preponderance of members of <em>Actinobacteria</em> and <em>Proteobacteria</em>. This study has established that members of the phyla <em>Actinobacteria</em> and <em>Proteobacteria</em> are the key drivers of the majority of important metabolic activities in the soil ecosystem and are thus an integral part of the soil microbial community.


2019 ◽  
Vol 10 ◽  
pp. 1853-1863
Author(s):  
Kassaye Gurebiyaw Legese ◽  
Taye Melese ◽  
Tadie Mire ◽  
Abebe Birara ◽  
Kefale Eniyew

Soil is a crucial and precious natural resource that govern numerous ecological processes. However, in Ethiopia particularly in north Gondar zone, soil erosion is a severe problem and a major cause of the decline of agricultural productivity. The adoption and diffusion of soil and water conservation practices (SWC), as a way to tackle this challenge, has become an important issue in the development policy agenda in the zone. Therefore, this study was to identify factors affecting Soil conservation investments in the North Gondar zone. Data was collected through interviewed schedule, filed observation and focus group discussion. The multistage sampling technique was employed to select 206 sample households.  Both descriptive and econometrics model was used to analyze the collected data. A multivariate profit (MPV) model was used to analyze the effect of demographic, socioeconomic, market, institutional and biophysical related factors on the interdependent investment decisions of SWC practices using household survey. The MPV model analysis indicates that farmers invest a combination of practices at parcel level by considering substitution and complementarity effects of the practices. The results also revealed that age of household heads, literacy status of household heads, off-farm activity, distance of farmlands from homesteads, tropical livestock unit, and access to training were influence farmers’ investments in SWC practices. The overall results indicate that the identified physical, socioeconomic, and institutional factors influence promote or hinder investments in SWC practice so, policymakers should take into consideration these various factors in designing and implementing SWC policies and Programmers.


2024 ◽  
Vol 74 (10) ◽  
pp. 6139-2024
Author(s):  
MICHAŁ SCHULZ ◽  
ALEKSANDRA ŁOŚ ◽  
PATRYCJA SKOWRONEK ◽  
ANETA STRACHECKA

Coral reefs are the most productive ecosystems on Earth. They ensure the conservation of biodiversity and are a live habitat for 25% of all marine organisms. The main relationship on the coral reef is the symbiosis between corals and algae from the genus Symbiodinium (commonly called zooxanthellae). The authors of this publication have characterized and described the factors limiting the occurrence of coral reefs, including: water temperature, salinity, access to sunlight, contamination, physicochemical and hydromechanical parameters of water. Moreover anthropogenic threats to coral reefs have been specified, including diving tourism, ecological disasters (e.g. oil spills) and the development of marine aquaristics. Rapid changes in the basic living conditions are dangerous for corals and their symbionts and may cause the unsuitability of the new environment resulting in diseases such as coral bleaching. Corals bleaching is a disease associated with the break of the coral and algae relationship which results in a coral reef death on a global scale. Awareness of these negative factors, often related to human activity, may allow us to better understand the ecological processes that are the basis of reef functioning and might enable us to prevent and oppose to the changes and ecological recessions of coral reefs.


1995 ◽  
Vol 31 (8) ◽  
pp. 367-370
Author(s):  
J. Heringa ◽  
H. Hylkema ◽  
M. Kroes ◽  
E. Ludden ◽  
P. G. van Schaick Zillesen

The computer program LAKE simulates a shallow lake ecosystem. The program is based on a mathematical model. In the model the most important aspects of several models for water resources management are integrated (Collins and Wlosinski, 1988; Jørgensen, 1976; Jørgensen et al., 1978; Scheffer, 1988). Furthermore, the model describes several ecological processes that have not yet been described by lake-ecosystem models so far. In the computer program, the mathematical model and an advanced, object oriented, user interface are combined. Following this approach the use of the original research models was extended to a use for the purpose of teaching lake ecology. We suggest that the same approach may be followed to open research models to other groups concerned with water resources management, such as management authorities, industry, agricultural extension, nature conservation and recreation.


2018 ◽  
Vol 6 (14) ◽  
pp. 51 ◽  
Author(s):  
Kristin L. Mercer

Agroecology derives much of its strength from interactions between disciplines that produce a holistic perspective on agricultural systems and issues.  Although ongoing integration of social dynamics into agroecology has strengthened the field, evolution and genetics have not been embraced to the same degree, despite the fact that they have been are discussed in some common agroecology texts.  I argue that the field of agroecology could extend its reach and depth by embracing the evolutionary study of agroecosystems.  Areas of evolutionary inquiry with relevance to agriculture focus on long or short term processes, encompass a range of scales, incorporate molecular or quantitative genetic analyses, and explore ecological processes to differing degrees.


Author(s):  
Gus Mills ◽  
Margaret Mills

This book demonstrates how cheetahs are adapted to arid savannahs like the southern Kalahari, and makes comparisons with other areas, especially the Serengeti. Topics dealt with are: demography and genetic status; feeding ecology, i.e. methods used for studying diet, diets of different demographic groups, individual diet specializations of females, prey selection, the impact of cheetah predation on prey populations, activity regimes and distances travelled per day, hunting behaviour, foraging success and energetics; interspecific competition; spatial ecology; reproductive success and the mating system; and conservation. The major findings show that cheetahs are well adapted to arid ecosystems and are water independent. Cheetah density in the study area was stable at 0.7/100 km2 and the population was genetically diverse. Important prey were steenbok and springbok for females with cubs, gemsbok, and adult ostrich for coalition males, and steenbok, springhares, and hares for single animals. Cheetahs had a density-dependent regulatory effect on steenbok and springbok populations. Females with large cubs had the highest overall food intake. Cheetahs, especially males, were often active at night, and competition with other large carnivores, both by exploitation and interference, was slight. Although predation on small cubs was severe, cub survival to adolescence was six times higher than in the Serengeti. There was no difference in reproductive success between single and coalition males. The conservation priority for cheetahs should be to maintain protected areas over a spectrum of landscapes to allow ecological processes, of which the cheetah is an integral part, to proceed unhindered.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Environmental DNA (eDNA), i.e. DNA released in the environment by any living form, represents a formidable opportunity to gather high-throughput and standard information on the distribution or feeding habits of species. It has therefore great potential for applications in ecology and biodiversity management. However, this research field is fast-moving, involves different areas of expertise and currently lacks standard approaches, which calls for an up-to-date and comprehensive synthesis. Environmental DNA for biodiversity research and monitoring covers current methods based on eDNA, with a particular focus on “eDNA metabarcoding”. Intended for scientists and managers, it provides the background information to allow the design of sound experiments. It revisits all steps necessary to produce high-quality metabarcoding data such as sampling, metabarcode design, optimization of PCR and sequencing protocols, as well as analysis of large sequencing datasets. All these different steps are presented by discussing the potential and current challenges of eDNA-based approaches to infer parameters on biodiversity or ecological processes. The last chapters of this book review how DNA metabarcoding has been used so far to unravel novel patterns of diversity in space and time, to detect particular species, and to answer new ecological questions in various ecosystems and for various organisms. Environmental DNA for biodiversity research and monitoring constitutes an essential reading for all graduate students, researchers and practitioners who do not have a strong background in molecular genetics and who are willing to use eDNA approaches in ecology and biomonitoring.


Sign in / Sign up

Export Citation Format

Share Document