scholarly journals Characterization of the Candida glabrata Transcription Factor CgMar1: Role in Azole Susceptibility

2022 ◽  
Vol 8 (1) ◽  
pp. 61
Author(s):  
Pedro Pais ◽  
Mónica Galocha ◽  
Raquel Califórnia ◽  
Romeu Viana ◽  
Mihaela Ola ◽  
...  

The prevalence of antifungal resistance in Candida glabrata, especially against azole drugs, results in difficult-to-treat and potentially life-threatening infections. Understanding the molecular basis of azole resistance in C. glabrata is crucial to designing more suitable therapeutic strategies. In this study, the role of the transcription factor encoded by ORF CAGL0B03421g, here denominated as CgMar1 (Multiple Azole Resistance 1), in azole susceptibility was explored. Using RNA-sequencing, CgMar1 was found to regulate 337 genes under fluconazole stress, including several related to lipid biosynthesis pathways. In this context, CgMar1 and its target CgRSB1, encoding a predicted sphingoid long-chain base efflux transporter, were found to contribute to plasma membrane sphingolipid incorporation and membrane permeability, decreasing fluconazole accumulation. CgMar1 was found to associate with the promoter of CgRSB1, which contains two instances of the CCCCTCC consensus, found to be required for CgRSB1 activation during fluconazole stress. Altogether, a regulatory pathway modulating azole susceptibility in C. glabrata is proposed, resulting from what appears to be a neofunctionalization of a Hap1-like transcription factor.

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4672
Author(s):  
Banashree Bondhopadhyay ◽  
Sandeep Sisodiya ◽  
Faisal Abdulrahman Alzahrani ◽  
Muhammed A. Bakhrebah ◽  
Atul Chikara ◽  
...  

Despite the recent advancements in therapeutics and personalized medicine, breast cancer remains one of the most lethal cancers among women. The prognostic and diagnostic aids mainly include assessment of tumor tissues with conventional methods towards better therapeutic strategies. However, current era of gene-based research may influence the treatment outcome particularly as an adjunct to diagnostics by exploring the role of non-invasive liquid biopsies or circulating markers. The characterization of tumor milieu for physiological fluids has been central to identifying the role of exosomes or small extracellular vesicles (sEVs). These exosomes provide necessary communication between tumor cells in the tumor microenvironment (TME). The manipulation of exosomes in TME may provide promising diagnostic/therapeutic strategies, particularly in triple-negative breast cancer patients. This review has described and highlighted the role of exosomes in breast carcinogenesis and how they could be used or targeted by recent immunotherapeutics to achieve promising intervention strategies.


2021 ◽  
Author(s):  
Marion Aruanno ◽  
Samantha Gozel ◽  
Isabelle Mouyna ◽  
Josie E Parker ◽  
Daniel Bachmann ◽  
...  

Abstract Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility. This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. Lay Summary A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Author(s):  
Rocío Hinojar ◽  
Raimund Erbel

Multislice computed tomography (MSCT) is currently the preferred modality for diagnosis and complete characterization of aortic pathology because of its widespread availability, rapidity, excellent spatial resolution, and excellent accuracy for all aortic segments and different aortic diseases. Aortic disease often remains undiagnosed until a life-threatening complication occurs or the disease is an unexpected finding on imaging studies performed for other purposes. MSCT allows the measurement of the aortic wall and dimension and the evaluation of morphologic features and surrounding structures, even in very sick or unstable patients. It provides not only accurate and highly reproducible aortic measurements but also the evaluation of the wall and contents of an aneurysm, including thrombus, and surrounding structures.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009582
Author(s):  
Bao Gia Vu ◽  
Mark A. Stamnes ◽  
Yu Li ◽  
P. David Rogers ◽  
W. Scott Moye-Rowley

The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis.


2021 ◽  
Author(s):  
Bao Vu ◽  
W. Scott Moye-Rowley

Azoles remain the most common used antifungal drugs for invasive candidiasis worldwide. They specifically inhibit the fungal lanosterol a-14 demethylase enzyme, which is commonly referred to as Erg11 in fungi. Inhibition of Erg11 ultimately leads to a reduction in ergosterol production, an essential fungal membrane sterol. Many Candida species, such as Candida albicans, develop mutations in this enzyme which reduces the azole binding affinity and results in increased azole resistance. Candida glabrata is also a pathogenic yeast that has a low intrinsic susceptibility to azole drugs and easily develops elevated resistance. These azole resistant mutations are almost exclusively found to cause hyperactivity of the Pdr1 transcription factor and rarely lie within the ERG11 gene. Here, we generated C. glabrata ERG11 mutations that were analogous to azole resistance associated mutations in C. albicans ERG11. Three different Erg11 forms (Y141H, S410F, and the corresponding double mutant (DM)) conferred azole resistance in C. glabrata with the DM Erg11 form causing the strongest phenotype. The DM Erg11 also induced cross-resistance to amphotericin B and caspofungin. The azole resistance caused by the DM allele of ERG11 imposed a fitness cost that was not observed with hyperactive PDR1 alleles. These data support the view that C. glabrata does not typically acquire ERG11 mutations owing to growth defects associated with these lesions while hyperactive PDR1 alleles have no obvious growth issues. Understanding the physiology linking ergosterol biosynthesis with Pdr1-mediated regulation of azole resistance is crucial for ensuring the continued efficacy of azole drugs against C. glabrata.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Arthur Durand ◽  
Thibault Duburcq ◽  
Thibault Dekeyser ◽  
Remi Neviere ◽  
Michael Howsam ◽  
...  

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a leading cause of death worldwide, despite the development of various therapeutic strategies. Cardiac dysfunction, also referred to as septic cardiomyopathy, is a frequent and well-described complication of sepsis and associated with worse clinical outcomes. Recent research has increased our understanding of the role of mitochondrial dysfunction in the pathophysiology of septic cardiomyopathy. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Bao Gia Vu ◽  
Grace Heredge Thomas ◽  
W. Scott Moye-Rowley

ABSTRACTA crucial limitation in antifungal chemotherapy is the limited number of antifungal drugs currently available. Azole drugs represent the most commonly used chemotherapeutic, and loss of efficacy of these drugs is a major risk factor in successful treatment of a variety of fungal diseases.Candida glabratais a pathogenic yeast that is increasingly found associated with bloodstream infections, a finding likely contributed to by its proclivity to develop azole drug resistance.C. glabrataoften acquires azole resistance via gain-of-function (GOF) mutations in the transcription factor Pdr1. These GOF forms of Pdr1 drive elevated expression of target genes, including the ATP-binding cassette transporter-encodingCDR1locus. GOF alleles ofPDR1have been extensively studied, but little is known of how Pdr1 is normally regulated. Here we test the idea that reduction of ergosterol biosynthesis (as occurs in the presence of azole drugs) might trigger activation of Pdr1 function. Using two different means of genetically inhibiting ergosterol biosynthesis, we demonstrated that Pdr1 activity and target gene expression are elevated in the absence of azole drug. Blocks at different points in the ergosterol pathway lead to Pdr1 activation as well as to induction of other genes in this pathway. Delivery of the signal from the ergosterol pathway to Pdr1 involves the transcription factor Upc2A, anERGgene regulator. We show that Upc2A binds directly to thePDR1andCDR1promoters. Our studies argue for a physiological link between ergosterol biosynthesis and Pdr1-dependent gene regulation that is not restricted to efflux of azole drugs.IMPORTANCEA likely contributor to the increased incidence of non-albicanscandidemias involvingCandida glabratais the ease with which this yeast acquires azole resistance, in large part due to induction of the ATP-binding cassette transporter-encoding geneCDR1. Azole drugs lead to induction of Pdr1 transactivation, with a central model being that this factor binds these drugs directly. Here we provide evidence that Pdr1 is activated without azole drugs by the use of genetic means to inhibit expression of azole drug target-encoding geneERG11. These acute reductions in Erg11 levels lead to elevated Pdr1 activity even though no drug is present. A key transcriptional regulator of theERGpathway, Upc2A, is shown to directly bind to thePDR1andCDR1promoters. We interpret these data as support for the view that Pdr1 function is responsive to ergosterol biosynthesis and suggest that this connection reveals the normal physiological circuitry in which Pdr1 participates.


Sign in / Sign up

Export Citation Format

Share Document