scholarly journals Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization

2021 ◽  
Vol 11 (12) ◽  
pp. 1306
Author(s):  
Alice Giontella ◽  
Luca A. Lotta ◽  
John D. Overton ◽  
Aris Baras ◽  
Andrea Sartorio ◽  
...  

Thyroid function has a widespread effect on the cardiometabolic system. However, the causal association between either subclinical hyper- or hypothyroidism and the thyroid hormones with blood pressure (BP) and cardiovascular diseases (CVD) is not clear. We aim to investigate this in a two-sample Mendelian randomization (MR) study. Single nucleotide polymorphisms (SNPs) associated with thyroid-stimulating hormone (TSH), free tetraiodothyronine (FT4), hyper- and hypothyroidism, and anti-thyroid peroxidase antibodies (TPOAb), from genome-wide association studies (GWAS), were selected as MR instrumental variables. SNPs–outcome (BP, CVD) associations were evaluated in a large-scale cohort, the Malmö Diet and Cancer Study (n = 29,298). Causal estimates were computed by inverse-variance weighted (IVW), weighted median, and MR-Egger approaches. Genetically increased levels of TSH were associated with decreased systolic BP and with a lower risk of atrial fibrillation. Hyperthyroidism and TPOAb were associated with a lower risk of atrial fibrillation. Our data support a causal association between genetically decreased levels of TSH and both atrial fibrillation and systolic BP. The lack of significance after Bonferroni correction and the sensitivity analyses suggesting pleiotropy, should prompt us to be cautious in their interpretation. Nevertheless, these findings offer mechanistic insight into the etiology of CVD. Further work into the genes involved in thyroid functions and their relation to cardiovascular outcomes may highlight pathways for targeted intervention.

Author(s):  
Io Ieong Chan ◽  
Man Ki Kwok ◽  
C Mary Schooling

Abstract Introduction Observational studies suggest earlier puberty is associated with higher adulthood blood pressure (BP), but these findings have not been replicated using Mendelian randomization (MR). We examined this question sex-specifically using larger genome-wide association studies (GWAS) with more extensive measures of pubertal timing. Methods We obtained genetic instruments proxying pubertal maturation (age at menarche (AAM) or voice breaking (AVB)) from the largest published GWAS. We applied them to summary sex-specific genetic associations with systolic and diastolic BP z-scores, and self-reported hypertension in women (n=194174) and men (n=167020) from the UK Biobank, using inverse-variance weighting meta-analysis. We conducted sensitivity analyses using other MR methods, including multivariable MR adjusted for childhood obesity proxied by body mass index (BMI). We used late pubertal growth as a validation outcome. Results AAM (beta per one-year later = -0.030 [95% confidence interval (CI) -0.055, -0.005] and AVB (beta -0.058 [95% CI -0.100, -0.015]) were inversely associated with systolic BP independent of childhood BMI, as were diastolic BP (-0.035 [95% CI -0.060, -0.009] for AAM and -0.046 [95% CI -0.089, -0.004] for AVB) and self-reported hypertension (odds ratios 0.89 [95% CI 0.84, 0.95] for AAM and 0.87 [95% CI 0.79, 0.96] for AVB). AAM and AVB were positively associated with late pubertal growth, as expected. The results were robust to sensitivity analysis using other MR methods. Conclusion Timing of pubertal maturation was associated with adulthood BP independent of childhood BMI, highlighting the role of pubertal maturation timing in midlife BP.


2020 ◽  
Author(s):  
Di Liu ◽  
Qiuyue Tian ◽  
Jie Zhang ◽  
Haifeng Hou ◽  
Wei Wang ◽  
...  

Background In observational studies, 25 hydroxyvitamin D (25OHD) concentration has been associated with an increased risk of Coronavirus disease 2019 (COVID-19). However, it remains unclear whether this association is causal. Methods We performed a two-sample Mendelian randomization (MR) to explore the causal relationship between 25OHD concentration and COVID-19, using summary data from the genome-wide association studies (GWASs) and using 25OHD concentration-related SNPs as instrumental variables (IVs). Results MR analysis did not show any evidence of a causal association of 25OHD concentration with COVID-19 susceptibility and severity (odds ratio [OR]=1.136, 95% confidence interval [CI] 0.988-1.306, P=0.074; OR=0.889, 95% CI 0.549-1.439, P=0.632). Sensitivity analyses using different instruments and statistical models yielded similar findings, suggesting the robustness of the causal association. No obvious pleiotropy bias and heterogeneity were observed. Conclusion The MR analysis showed that there might be no linear causal relationship of 25OHD concentration with COVID-19 susceptibility and severity.


2021 ◽  
Author(s):  
Kailin Xia ◽  
Linjing Zhang ◽  
Lu Tang ◽  
Tao Huang ◽  
Dongsheng Fan

Abstract Background Observational studies have suggested a close but controversial relationship between blood pressure (BP) and amyotrophic lateral sclerosis (ALS). However, it remains unclear whether this association is causal. The authors employed a bidirectional two-sample Mendelian randomization (MR) approach to investigate whether there is a causal relationship between BP and ALS. Genetic proxies for systolic blood pressure (SBP), diastolic blood pressure (DBP), antihypertension drugs (AHDs), ALS, and their corresponding genome-wide association studies (GWAS) summary datasets were obtained from the updated largest studies. Inverse variance weighted (IVW) method was adopted as the main approach to examine the effect of BP on ALS and four other MR methods for sensitivity analyses. To exclude the interference between SBP and DBP, multivariable MR was used. Results We found that genetically determined increased DBP was a protective factor for ALS (OR = 0.978, 95% CI 0.960–0.996, P = 0.017), and increased SBP was an independent risk factor for ALS (OR = 1.014, 95% CI 1.003–1.025, P = 0.015). The high level of targeted protein of Calcium channel blocker (CCB) showed a causative relationship with ALS (OR = 0.985, 95% CI 0.971-1.000, P = 0.049). No evidence was revealed that ALS caused results change of BP measurements. Conclusions This study demonstrated that an increase in DBP is a protective factor for ALS, and increased SBP is independently risk for ALS, which may be related to sympathetic excitability. Blood pressure management is important in ALS, in which CCB may be a promising candidate.


2020 ◽  
Author(s):  
Di Liu ◽  
Qiuyue Tian ◽  
Jie Zhang ◽  
Haifeng Hou ◽  
Wei Wang ◽  
...  

Abstract Background: Coronavirus disease 2019 (COVID-19) has caused a large global pandemic. In observational studies, 25 hydroxyvitamin D (25OHD) concentration has been associated with an increased risk of Coronavirus disease 2019 (COVID-19). However, it remains unclear whether this association is causal.Methods: We performed a two-sample Mendelian randomization (MR) to explore the causal relationship between 25OHD concentration and COVID-19, using summary data from the genome-wide association studies (GWASs) and using 25OHD concentration-related SNPs as instrumental variables (IVs). Results: MR analysis did not show any evidence of a causal association of 25OHD concentration with COVID-19 susceptibility and severity (odds ratio [OR]=1.136, 95% confidence interval [CI] 0.988-1.306, P=0.074; OR=0.889, 95% CI 0.549-1.439, P=0.632). Sensitivity analyses using different instruments and statistical models yielded similar findings, suggesting the robustness of the causal association. No obvious pleiotropy bias and heterogeneity were observed.Conclusions: The MR analysis showed that there might be no linear causal relationship of 25OHD concentration with COVID-19 susceptibility and severity.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1651 ◽  
Author(s):  
Shuai Yuan ◽  
Susanna C. Larsson

Available evidence on the associations of dietary and circulating levels of long-chain n-3 fatty acids, which have potential antiarrhythmic properties, and other fatty acids with atrial fibrillation is conflicting and limited. We conducted a Mendelian randomization study to assess the associations between plasma phospholipid fatty acid levels and atrial fibrillation. Summary-level data of atrial fibrillation were available from 65,446 cases and 522,744 non-cases included in the Atrial Fibrillation Consortium. Sixteen single-nucleotide polymorphisms associated with ten fatty acids at significance level of p < 5 × 10−8 were identified as instrumental variables from the hitherto largest genome-wide association studies for plasma fatty acids. The fixed-effects inverse-variance weighted method was used to assess the association of individual plasma fatty acids and atrial fibrillation risk. The random-effects inverse-variance weighted method, weighted median method, and Mendelian randomization (MR)-Egger method were employed as the sensitivity analyses. Genetic predisposition to higher levels of any of the ten individual fatty acids was not associated with atrial fibrillation risk.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parth D. Shah ◽  
C. M. Schooling ◽  
Luisa N. Borrell

While the association of periodontitis with Type II diabetes (T2DM) is well-established, the causal relationship remains uncertain. We examined the causal association of periodontitis with glycemic traits (HbA1c, fasting glucose, and fasting insulin) and T2DM using Mendelian randomization (MR) taking advantage of large genome-wide association studies of European and East Asian adults, i.e., the UK Biobank (n ≈ 350,000) (HbA1c), trans-ancestral MAGIC (HbA1c, fasting glucose, and insulin), and DIAMANTE (74,124 cases/824,006 controls), and AGEN for T2DM in Europeans and East Asians, respectively. Periodontitis was instrumented using single-nucleotide polymorphisms (SNPs), strongly and independently predicting liability to periodontitis in each ancestry group. SNP-specific Wald estimates were combined using inverse variance weighting. Sensitivity analyses were performed using the weighted median and MR-Egger with meta-analysis of MR estimates for Europeans and East Asians. Genetically instrumented liability to periodontitis was not associated with glycemic traits or T2DM in either ancestry or when ancestry specific estimates were meta-analyzed. Our findings do not support a causal association of liability to periodontitis with glycemic traits or T2DM. However, further research is required confirming these findings among other racial/ethnic groups, especially groups who carry a heavy burden of both periodontitis and T2DM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Yan ◽  
Jian Yang ◽  
Binbin Zhao ◽  
Yanhua Wu ◽  
Ling Bai ◽  
...  

ObjectiveObservational studies have demonstrated a close relationship between obesity and longevity. The aim of this Mendelian randomization (MR) study is to investigate whether genetic determinants of visceral adipose tissue (VAT) accumulation are causally associated with longevity.MethodsIn this two-sample MR study, we used summary data of genetic determinants (single-nucleotide polymorphisms; p &lt; 5 × 10−8) of VAT accumulation based on genome-wide association studies (GWASs). Longevity was defined as an age beyond the 90th or 99th survival percentile. The causal association of VAT accumulation with longevity was estimated with the inverse variance-weighted (IVW) method. Sensitivity analyses, including weighted median, MR-Egger, and MR–pleiotropy residual sum and outlier (PRESSO), were also employed to assess the stability of the IVW results.ResultsOur MR analysis used 221 genetic variants as instrumental variables to explore the causal association between VAT accumulation and longevity. In the standard IVW methods, VAT accumulation (per 1-kg increase) was found to be significantly associated with lower odds of surviving to the 90th (odds ratio [OR] = 0.69; 95% confidence interval [CI] 0.55 to 0.86, p = 8.32 × 10−4) and 99th (OR = 0.67; 95% CI 0.49 to 0.91, p = 0.011) percentile ages. These findings remained stable in sensitivity analysis.ConclusionThis MR analysis identified a causal relationship between genetically determined VAT accumulation and longevity, suggesting that visceral adiposity may have a negative effect on longevity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanjun Wang ◽  
Ping Guo ◽  
Yanan Zhang ◽  
Lu Liu ◽  
Ran Yan ◽  
...  

Background: Hypothyroidism and primary biliary cirrhosis (PBC) are often co-existed in observational epidemiological studies. However, the causal relationship between them remains unclear.Methods: Genetic correlation, Mendelian randomization (MR) and colocalization analysis were combined to assess the potential causal association between hypothyroidism and PBC by using summary statistics from large-scale genome-wide association studies. Various sensitivity analyses had been conducted to assess the robustness and the consistency of the findings.Results: The linkage disequilibrium score regression demonstrated significant evidence of shared genetic architecture between hypothyroidism and PBC, with the genetic correlation estimated to be 0.117 (p = 0.006). The OR of hypothyroidism on PBC was 1.223 (95% CI, 1.072–1.396; p = 2.76 × 10−3) in MR analysis with inverse variance weighted (IVW) method. More importantly, the results from other 7MR methods with different model assumptions, were almost identical with that of IVW, suggesting the findings were robust and convincing. On the other hand, PBC was also causally associated with hypothyroidism (OR, 1.049; 95% CI, 1.010–1.089; p = 0.012), and, again, similar results can also be obtained from other MR methods. Various sensitivity analyses regarding the outlier detection and leave-one-out analysis were also performed. Besides, colocalization analysis suggested that there existed shared causal variants between hypothyroidism and PBC, further highlighting the robustness of the results.Conclusion: Our results suggest evidence for the bi-directional causal association between hypothyroidism and PBC, which may provide insights into the etiology of hypothyroidism and PBC as well as inform prevention and intervention strategies directed toward both diseases.


Author(s):  
Fernando Pires Hartwig ◽  
Kate Tilling ◽  
George Davey Smith ◽  
Deborah A Lawlor ◽  
Maria Carolina Borges

Abstract Background Two-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables. Methods We performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR. Results In the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index. Conclusions Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


Sign in / Sign up

Export Citation Format

Share Document